

Embedded Systems SIA, VAT No LV40003411103
47. Katolu str., Riga, LV 1003, LATVIA
Phone: +371 67648888, fax: +371 67205036, e-mail: sales@openrb.com

LogicMachine4

Product Manual

Document Issue 1.0
December, 2014

Technical Support:
support@openrb.com

2

Copyright

Copyright © 2011 Embedded Systems SIA. All Rights Reserved.

Notice

Embedded Systems SIA., reserves the right to modify the information contained herein as
necessary. Embedded Systems SIA assumes no responsibility for any errors which may appear in
this document. Information in this document is provided solely to enable system and software
implementers to use KNX/EIB LogicMachine product.

Trademarks

LogicMachine is a trademark of Embedded Systems SIA. All other names and trademarks are
the property of their respective owners and are hereby acknowledged.

Introduction

LogicMachine is your easiest way to program complex logic in KNX/EIB, Modbus, BACnet,
EnOcean, DALI, 1-Wire networks. The LogicMachine will enable you to efficiently customize
building automation processes, easily delivering unlimited flexibility benefit to end users in a
cost-effective way.

LogicMachine is an embedded platform with integrated TPUART. LogicMachine allows to use
it as IP Router, cross-standard gateway, logic engine, and visualization WEB SCADA server.
Scripting templates provides user-friendly, flexible configuration interface. Via applying custom
scripts the LogicMachine can simultaneously act as thermostat, security panel, lighting
controller, etc

Technical support

Any faulty devices should be returned to Embedded Systems.

If there are any further technical questions concerning the product please contact our support,
available Mon-Fri 9:00 – 17:00 GMT +02:00. Please write to support@openrb.com.

Firmware updates are available at www.openrb.com

3

Caution
Security advice

The installation and assembly of electrical equipment may only be performed by skilled
electrician. The devices must not be used in any relation with equipment that supports, directly
or indirectly, human health or life or with application that can result danger of people, animals or
real value

Mounting advice

The devices are supplied in operational status. The cables connections included can be clamped
to the housing if required.

Electrical connection

The devices are constructed for the operation of protective low voltage (SELV). Grounding of
device is not needed. When switching the power supply on or off, power surges must be avoided.

4

Contents

DEVICE SPECIFICATION ... 7

TERMINAL CONNECTION SCHEMES .. 10

FACTORY DEFAULT, DISCOVER IP ... 12

STANDARDS SUPPORTED ... 12

QUICK STARTUP GUIDE .. 14

DEFAULT IP CONFIGURATION .. 14
DISCOVER LOGICMACHINE IP ADDRESS ... 16
FIRMWARE UPGRADE ... 17
LOGICMACHINE FOR KNX/EIB NETWORK CONFIGURATION MANAGEMENT WITH ETS .. 18
KNX AND IP ROUTER SETTINGS .. 20
QUICK GUIDE - CREATE VISUALIZATION FOR IPAD/PC ... 24

GRAPHICAL USER INTERFACE LOGIN .. 31

1. LOGICMACHINE CONFIGURATION .. 32

1.2. SCRIPTING .. 33
1.1.1. Block programming ... 33
1.1.2. Block functions .. 35
1.1.3. Adding a new script ... 37
1.1.4. Event-based scripting .. 39
1.2.3. Resident scripting .. 40
1.2.4. Scheduled scripting.. 40
1.2.5. Script editor ... 40
1.2.6. Object functions ... 42
1.2.7. Returned object functions, group communication functions .. 43
1.2.8. Group communication functions .. 44
1.2.9. Object function examples ... 44
1.2.10. Data type functions, data types ... 45
1.2.11. Data types ... 45
1.2.12. Data storage function ... 46
1.2.13. Alert function .. 47
1.2.14. Log function .. 47
1.2.15. Scheduled scripting date/time format ... 48
1.2.16. Time function .. 48
1.2.17. Data Serialization ... 48
1.2.18. String functions ... 49
1.2.19. Input and output functions .. 53
1.2.20. Script control functions ... 54
1.2.21. JSON library ... 54
1.2.22. Conversion .. 54
1.2.23. Bit operators ... 55
1.2.24. Input and Output Facilities ... 56
1.2.25. Mathematical functions ... 57
1.2.26. Table manipulations ... 59
1.2.27. Operating system facilities .. 59
1.2.28. Extended function library ... 61
1.2.29. User libraries .. 62
1.2.30. Common functions .. 63
1.2.31. Start-up (init) script .. 63
1.2.32. Tools ... 64

1.3. OBJECTS .. 65
1.3.1. Object parameters ... 66
1.3.2. Object visualization parameters .. 67
1.3.3. Change the object state .. 68
1.3.5. Object control bar ... 69
1.3.6. Filter objects .. 70

1.4. OBJECT LOGS .. 71
1.4.1. Export logs... 72

5

1.5. SCHEDULERS ... 75
1.5.1. Add new scheduler ... 75
1.5.2. Scheduler events .. 76
1.5.3. Scheduler holidays ... 76

1.6. TREND LOGS .. 77
1.6.1. Add new trend log .. 77
1.6.2. Trend logs functions .. 78

1.7. VISUALIZATION STRUCTURE ... 80
1.7.1. Levels / Plans ... 80
1.7.2. Layouts / Widgets... 83

1.8. VISUALIZATION ... 86
1.8.1. Plan editor ... 86
1.8.2. Object .. 87
1.8.3. Link .. 89
1.8.4. Text Label .. 90
1.8.5. Image ... 90
1.8.6. Frame .. 91
1.8.7. Gauge .. 92
1.8.8. Camera .. 93
1.8.9. Graph ... 94

1.9. VIS.GRAPHICS ... 96
1.10. UTILITIES .. 98
1.11. ALERTS ... 102
1.12. ERROR LOG ... 103
1.13. LOGS ... 103
1.14. HELP ... 104

2. USER MODE VISUALIZATION .. 105

2.1. CUSTOM DESIGN USERMODE VISUALIZATION ... 106

3. TOUCH VISUALIZATION ... 106

4. SYSTEM CONFIGURATION ... 108

4.1. CHANGING PASSWORD .. 108
4.2. PACKAGES... 109
4.3. UPGRADE FIRMWARE .. 110
4.4. REBOOT LOGIC MACHINE ... 110
4.5. SHUTDOWN LOGIC MACHINE .. 110
4.6. INTERFACE CONFIGURATION ... 111

4.6.1. Ethernet interface data throughput graph ... 112
4.7. ROUTING TABLE ... 113

4.7.1. Dynamic routes .. 113
4.7.2. Static routes ... 113

4.8. ARP TABLE ... 114
4.9. FTP SERVER .. 114
4.10. SYSTEM MONITORING ... 115
4.11. NTP CLIENT .. 115
4.12. SYSTEM STATUS .. 116
4.13. NETWORK STATUS .. 116
4.14. NETWORK UTILITIES ... 117
4.15. SYSTEM LOG ... 117
4.16. RUNNING PROCESSES .. 118

5. USER MODE SCHEDULERS ... 119

5.1. EVENTS ... 119
5.2. HOLIDAYS ... 120

6. TREND LOGS ... 121

7. MODBUS RTU/TCP INTERCONNECTION WITH LM ... 123

7.1. Modbus device profile ... 123
7.2. Modbus RTU settings ... 124
7.3. Adding Modbus device ... 125

6

7.4. Program address for UIO20 Modbus device ... 126
7.5. MODBUS SLAVE EXAMPLES .. 127

6. BACNET IP INTERCONNECTION WITH LM4 ... 131

6.1. BACnet server mode: transparent data transfer to BACnet network .. 131
6.2. BACnet client mode ... 132

7. 1-WIRE CONFIGURATION ... 134

8. DALI CONFIGURATION .. 136

8.1. DALI OBJECT MAPPING ... 137
8.2. ACCESS DALI BUS FROM SCRIPTS ... 137

9. ENOCEAN INTERCONNECTION WITH LOGICMACHINE .. 140

9.1. ENOCEAN INTERFACES ... 140
9.2. ENOCEAN TO KNX MAPPING .. 140
9.3. KNX TO ENOCEAN MAPPING .. 142

10. CEC/HDMI INTEGRATION WITH LM4 ... 145

10.1. CEC FUNCTION ... 145
10.2. CEC COMMAND GENERATOR .. 147
10.3. COMMON COMMANDS ... 147

11. DMX INTERCONNECTION WITH LM4 ... 148

11.1. EXAMPLES .. 150

12. 3G MODEM CONNECTION WITH LM4 ... 152

12.1. EXAMPLES .. 154
12.2. SEND SMS MESSAGES TO SPECIFIC SIM NUMBERS AFTER GROUP-READ OR GROUP-WRITE IS TRIGGERED

 155
12.3. SEND SMS MESSAGES WITHOUT 3G MODEM ... 155

13. HDL PROTOCOL INTEGRATION IN LOGICMACHINE4 .. 157

13.1. HDL FUNCTION ... 157
13.2. USAGE EXAMPLE – HDL DIMMER CONTROL ... 159
13.3. USAGE EXAMPLE – HDL RELAY CONTROL .. 159

14. COMMUNICATION WITH RS232/RS485 SERIAL PORTS .. 161

15. BLUETOOTH 4.0 INTEGRATION .. 163

16. SIP SERVER ON LOGICMACHINE ... 165

17. OBJECT VALUE EXPORT VIA XML .. 167

17.1. ALERTS, ERRORS VALUES ... 169

18. READ ALERTS RSS FEEDS FROM LOGICMACHINE .. 170

7

Device specification

Application

Logical functions; WEB SCADA visualization for PC and touch-devices; cross-standard
gateway between KNX, Modbus BACnet, EnOcean, 1-Wire, DALI and other protocols;
integration with third party devices over RS232 or RS485 serial ports – AV, IR; Data logger with
trends; HVAC

Types of product

LogiMachine4 LM4

Standards and norms compliance

EMC: EN61000-6-1
 EN61000-6-3
PCT Certificate

Technical data:

Power supply: 24V DC -20...+25%

Power consummation: 1.3W

Interface: KNX/EIB TP1 1
 10BaseT/100BaseTX 1
 RS-485 3
 USB2.0 2
 DALI 1
 1-Wire 1
 CEC/HDMI 1
 InfraRed out 1

Connections: KNX bus: Bus Connection Terminal

0.8mm2
Power supply: Clamp, 1.5mm2

 Serial: Clam, 1.5mm2
 DALI: Clam, 1.5mm2
 1-Wie: Clam, 1.5mm2
 CEC: Clam, 1.5mm2
 IR: Clam, 1.5mm2

Operating elements LED 1 – CPU load
 1 - Activity

8

Enclosure: Material: Polyamide
 Color: Gray
 Dimensions: 70(W)x90(H)x51(L) mm

Usage temperature: 0C ... +45C
Storage temperature: -15C ... +55C
Weight: 150g
Warranty: 2 years
Relative Humidity: 10...95 % without condensation

9

LogicMachine4 kit contains:

� Embedded board with preinstalled software
� Plastic DIN-rail case
� CEC-HDMI adapter (by request when making order)

10

Terminal connection schemes

CEC connection

11

DALI connection

12

Factory default, discover IP

There is a reset button on the side of LogicMachine4. You can either reboot the device by
pressing this button or reset the configuration to factory defaults:

• Press and hold for <10 sec – reboot the device

• Press and hold for >10 sec – reset networking with IP to factory default

• Press and hold for >10 sec and again press and hold for >10 sec – full reset of configuration
to factory defaults

There is also another possibility to discover IP address – LM3 has built-in zeroconf utility by
default, so using the following applications you can find out the IP:

• Windows PC – ServiceBrowser

• Linux PC – Avahi

• Android – ZeroConf Browser

• iOS – Discovery

For more info please see here: http://openrb.com/discover-ip-of-logic-machine-or-streaming-
player/

Standards supported

13

LogicMachine is compatible with the following standards:

• KNX/EIB TP, KNXnet/IP

• Modbus TCP, Modbus RTU Client/Server

• BACnet IP, Client/Server

• GSM (Huawei E173 and similar modem support through USB) for sending SMS
notifications and controlling the installation by receiving SMS commands.

• DMX512 (in the box, through RS485)

• DALI

• 1-Wire

• CEC/HDMI

• Ekey biometrical access systems (RS485)

• HVAC systems can be controller through RS232 interface by using scripting

• SMTP/Email, SSL

• SIP

• XML (export object values, alerts or errors; integration with Fidelio)

• RSS (read Error or Alert tab content)

• JSON, XMPP

• ..

The system is made so that each of the standards can be used with each other, so LogicMachine
can act as BACnet to DALI gateway or Modbus to GSM etc.

14

Quick startup guide

1) Mount the device on DIN rail
2) Connectthe KNX bus cable
3) Connect 24V power supply to the device (red pole to 24V+, grey pole to GND)
4) Connect Ethernet cable coming from the PC

Default IP configuration

Logic Machine/System ConfigurationLogin
name

admin

Logic Machine/System ConfigurationPassword admin

User mode visualization/Touch visualization
Login name

Read-only: visview

Write: viscontrol

Write + admin level: visadmin

User mode visualization/Touch visualization
Password

Read-only: visview

Write: viscontrol

Write + admin level: visadmin

IP address on LAN 192.168.0.10

Networks mask on LAN 255.255.255.0

Change IP settings

In System configuration �Network � Interfaces window click on the specific interface to
change the IP settings.

15

� Protocol– specific protocol used for addressing
o Static IP – static IP address. By default 192.168.0.10
o DHCP – use DHCP protocol to get IP configuration.

� Current IP– the IP address got from DHCP server. This field appears only
if the IP address is given otherwise it’s hidden.

� Network mask – network mask. By default 255.255.255.0 (/24)
� Gateway IP – gateway IP address
� DNS server – DNS server IP address
� MTU– maximum transmission unit, the largest size of the packet which could be passed

in the communication protocol. By default 1500

When changes are done, the following icon appears in the top-right corner. This should be
applied changes to take effect.

16

Discover LogicMachine IP address

Windows PC

Easiest way is by using the utility ServiceBrowser which can be downloaded here:
http://marknelson.us/2011/10/25/dns-service-discovery-on-windows/

Linux PC
The utility called Avahi, can be downloaded here:
www.avahi.org

Android
The freely available app called ZeroConf Browser, can be downloaded in Play

Store:
https://play.google.com/store/apps/details?id=com.grokkt.android.bonjour&hl=en

17

iOS/Mac OS
The freely available app called Discovery, can be downloaded in App Store:
https://itunes.apple.com/en/app/discovery-bonjour-browser/id305441017?mt=8

For iPad install the iPhone/iPod version of the utility.

Firmware upgrade

Note! Before each upgrade please backup your visualization, scripts and object in Logic

Machine � Tools � Backup.

Note! After each upgrade, we strongly recommend to clean your browser cache.

Use web browser to perform upgrade of the software of Logic Machine. Firmwares are available
in a form of images and could be downloaded from support page ofwww.openrb.com.

Complete system upgrade can be done in System Configuration �System �Upgrade firmware

18

LogicMachine visualization upgrade or patch installation can be done in Utilities tab and press
on Install updates icon. After *.LMU file is chosen from the corresponding location press Save
button. The device will be rebooted after 5 seconds and new firmware will be installed.

LogicMachine for KNX/EIB network configuration management with ETS

To use LogicMachine with KNXnet/IP functionality and program other KNX bus devices, the
device should be added into ETS Connection Manager.

• Go to Extras � Options�Communication�Configure interfaces

19

• Put some freely chosen Name for the connection

• Chose Type = KNXnet/IP

• Press Rescan button and then choose from the drop down menu found LogicMachine

• Press OK

• Back in Options ���� Communication window select newly created interface as
Communication Interface from the drop-down menu.

• To test the communication with ETS, press Test button.

• Make sure that bus status is Online – press button in ETS.

20

KNX and IP Router settings

KNX specific configuration is located in System configuration� Network � KNX connection

window.

General tab

� Mode [TP-UART / EIBnet IP Tunneling / EIBnet IP Tunneling(NAT mode) / EIBnet IP

Routing] – KNX connection mode. LogicMachine3 Reactor has TPUART interface by
default built-in. Note! If there is no KNX TP connected to the device, it will
automatically offer to switch to KNXnet/IP mode.

� ACK all group telegrams – acknowledge receipt of telegram to all group communication
� Parameter–KNX corresponding interface in OS of the system
� KNX address – KNX physical address of the device
� KNX IP features – Use this device with KNX IP features e.g. for KNXnet/IP network

configuration
� Multicast IP – multicast IP address
� Multicast TTL – Time to live for multicast telegram in seconds
� Maximum telegrams in queue – count of maximum telegrams in the queue

21

IP > TP filter

Filtering table for telegrams going from IP network to KNX TP1 is located in this submenu.

� Apply filter to tunneling – either to apply filter policy to telegrams in tunneling
mode. If ETS is used it is recommended to turn this feature off.

� SRC policy [No filter / Accept selected individual addresses / Drop selected

individual addresses]– policy to apply to the list of source addresses
� Ind. address list – list of individual addresses. One address/range per line. Use * (e.g.

1.1.*) to filter all addresses in the given line.
� DST group policy[No filter / Accept selected group addresses / Drop selected group

addresses]– policy to apply to the list of destination group addresses
� Group address list – list of group addresses. One address/range per line. Use * (e.g.

1/1/*) to filter all addresses in the given line.

Note! KNX IP features should be on for filter to work. Filtering lists are updated at
once, changing policies requires restart.

22

Note that group address list can be filled automatically by checking necessary group

addresses in LogicMachine � Objects list

TP > IP filter

Filtering table for telegrams going from KNX TP1 to IP network is located in this submenu.

23

� Apply filter to virtual objects – either to apply filter policy to objects added in Objects
tab as virtual objects without attraction to bus

� SRC policy [No filter / Accept selected individual addresses / Drop selected

individual addresses]– policy to apply to the list of source individual addresses
� Ind. address list – list of individual addresses. One address/range per line. Use * (e.g.

1.1.*) to filter all addresses in the given line.
� DST group policy [No filter / Accept selected group addresses / Drop selected group

addresses]– policy to apply to the list of destination group addresses
� Group address list – list of group addresses. One address/range per line. Use * (e.g.

1/1/*) to filter all addresses in the given line.

Note! KNX IP features should be on for filter to work. Filtering lists are updated at
once, changing policies requires restart.

24

Quick guide - create visualization for iPad/PC

1. Import objects

Fastest way is to import *.ESF file from ETS in Logic Machine �Utilities � Import ESF file.

Or connect LM to the bus and it will detect objects automatically (in yellow) in Objects tab once

they are activated. Objects can be added manually as well.

25

2. Prepare graphics

Either in Adobe Illustrator or any ready images can be used. In this example we use

professionally created designs in Illustrator in SVG form (so we can do scaling depending of the

screen size and not losing the quality)

a) basic background which can be changed by necessity

b) foreground which will stay unchanged

26

Add both files in Logic Machine � Vis. Graphics � Images/Backgrounds

Prepare set of icons (preferably in SVG form) and add them in Logic Machine � Vis. Graphics

� Icons. Or you can use icons predefined in LogicMachine by default.

27

Create “floor” structure and add objects to the map

In Logic Machine �Vis.structure menu the structure of the visualization is defined and

visualization backgrounds are uploaded. Use icon to add floor.

In this example we will create a new floor named “1_page_H” and “Bathroom_H”. First Floor

will be a dashboard with link to other rooms and functions. Choose screen resolution for which

you are creating this visualization, choose first and second background images from the ones

added before.

28

Add objects to newly created visualization map

After the building and floor structure is defined, it is visualized in Visualization tab. Controlled

and monitored objects can be added and managed in this section. Both side bars can be

minimized by pressing on left/right arrow icon making the map more visible especially on small

displays.

Objects can be added to the map by clicking on Unlock current floor plan for editing button. In

this example we are creating first page of visualization which will link to other Floors with

29

specific object control. Add link by clicking on Link tab, choosing specific icon, scale it and

place in desired location.

This example’s secondary background already contains icons on it, so what is needed, is to add

transparent image in Vis.graphics and add this image on top of every icon.

When all links are defined, press Save and reload floor plan button.

In same way fill the Bedroom plan with object parameters in Object tab.

30

Launching visualization on touch device (iPad in this case)

• Make sure your iPad is connected wirelessly to the Logic Machine

• In the browser enter Logic Machine’s IP (default 192.168.0.10).

• Click on the User mode visualization

• Save the application as permanent/shortcut in your iPad

Touch visualization is also automatically created with list of Floor objects.

31

Graphical User Interface Login

KNX/EIB LogicMachine has IP address 192.168.0.10 set by default to LAN interface. Use this

address as www address in the browser's address field.

Note! Make sure that the PC connecting to the LogicMachine has IP set from the same subnet.

After successful login a default page appears.

� Logic Machine – visualization creator, scripts, object relations, alerts, KNX objects and
KNX objects, designing building view and visualization maps

� Network configuration – IP and KNXnet/IP specific configuration

� User mode visualization – defined visualization maps with objects

� Touch visualization – Visualization system for iPhone/iPod/iPad/Android touch screen

devices

� User mode schedulers – User defined schedulers

� Trend logs – Trends for data logs

32

1. LogicMachine configuration

Login Password

admin admin

This is a home directory for LogicMachine configuration management. The main menu consists
of the following menus:

• Scripting – scripting repository management

• Objects– KNX bus object management

• Object logs– KNX bus object historical logs

• Schedulers– administrator interface for user mode schedulers

• Trend logs – administrator interface for trend logs

• Vis.structure – visualization structure definition

• Visualization– Visualization creation, control and monitoring

• Vis.graphics– icon, background, font management

• Utilities – utilities including import from ETS, reset object DB, backup, update system
installation

• BACnet – BACnet client with scanner

• Modbus – Modbus mapper

• Enocean – Enocean mapper

• 1-wire – 1-wire object mapping to KNX

• Alerts – alert messages defined with alert function

• Logs – log messages defined with log function

• Error log – error messages in KNX bus

• Help – documentation for scripting syntaxes

33

1.2. Scripting

Scripting menu allows adding and managing various scripts, depending on the type of the script.
There are two ways to program logics – blocks and via Lua programming language. Most of the
Lua language aspects are covered in the first edition of "Programming in Lua" which is freely
available at http://lua.org/pil/

Note! Data format — in most cases data is stored and transferred between LogicMachine parts

using hex-encoded strings (2 bytes per 1 byte of data).

There are six main types of scripts:

Event-based – scripts that are executed when a group event occurs on the bus. Usually used when

nearly real-time response is required.

Resident– scripts that use polling to check for object state changes. Usually used for heating and

ventilation when data is gathered from more than one group address.

Scheduled– scripts that run at the required time and day. Can be used for various security systems

and presence simulations.

User libraries – user defined scripts to call from other scripts

Common functions – common functions to call from other scripts

Start-up (init) script – initialization script that is run upon system starting.

1.1.1. Block programming

In order to create blocks, enable this functionality in Utilities � General configuration �

Enable Block Editor.

Once the script is added, you can see puzzle icon to access Block editor.

34

Blocks are sorted by categories on the left side. Each block is puzzle based and can be put only
in appropriate location / other block.

If the block is indicated with the blue label on the top left corner, you can define the structure of
the block (e.g. If Else)

Press Delete button or drag the block to the garbage if you want to delete it

35

You can always look at the LUA code by clicking on Show/Hide Lua code button. This will
allow to learn the scripting language.

1.1.2. Block functions

In Scripting menu there is Block functions button. Here you can create custom block functions
which can be later used as ready block in Block editor.

Each function must have a special comment in order to be converted to a block.

• First line must have Function keyword followed by the function name

• Second line contains short function description which is shown as block title

• If third line contains Comment keyword, all following lines until Input or
Output will be added to block comment tooltip

• Optionally, block color may be specified in hexadecimal format (#f00 or
#ff9900) or numeric format as hue value between 0 and 359

• Following lines contain input and output lists. Each block can have any
number of inputs and outputs:

36

Inputs are a function parameter, other blocks can be connected to inputs by
default. If input definition has [object], [storage] or [tag] in its name then the
input is replaced with object, storage or tag selection input.

Each output variable is assigned to the corresponding function return value.

Example:

--- Function invert

--- Write inverted value

--- Comment

--- Set target object value to

--- inverse of source object value

--- Color #f90

--- Input

--- Source object [object]

--- Target object [object]

function invert(a, b)

local value = grp.getvalue(a)

grp.write(b, not value, dt.bool)

end

Once block function is added, it is available as a block in Block editor.

37

1.1.3. Adding a new script

Click on Add new script button on the bottom part of the Event-based, Resident or Scheduled

submenus

The following fields should be filled when adding a new script:

Event-based

� Script name – the name of the script
� Group address / Tag – specific group address or tag name on which the script will be

triggered
� Active– specifies whether the script is active (green circle) or disabled (red circle)
� Execute on group read– specifies whether the script is executed on KNX group read

telegram

� Category – a new or existing name of the category the script will be included. This
will not affect on script action, helps only by grouping the scripts and watching by
categories in Tools � Print script listings page

38

� Description– description of the script

Resident

� Script name – the name of the script
� Sleep interval (seconds) – interval after which the script will be executed.
� Active– specifies whether the script is active (green circle) or disabled (red circle)
� Category – a new or existing name of the category the script will be included. This will

not affect on script action, helps only by grouping the scripts and watching by categories
in Tools � Print script listings page

� Description– description of the script

Scheduled

39

� Script name – the name of the script
� Minute – Minute

� Hour – Hour
� Day of the month – Day of the month

� Month of the year – Month of the year
� Day of the week – Day of the week

� Active– specifies whether the script is active (green circle) or disabled (red circle)
� Category – a new or existing name of the category the script will be included. This

will not affect on script action, helps only by grouping the scripts and watching by
categories in Tools � Print script listings page

� Description– description of the script

List of scripts

There are five actions you can do with each of the script:

Duplicate – Duplicate the script with its source code
Editor – Enter scripting editor to write specific code for the particular program. It can be
source code editor or block programming
Active – Make script active (green) or deactivate it (red)
Delete – Delete the script. When pressing this icon the confirmation is asked to accept the
delete.

1.1.4. Event-based scripting

Event-based scripting can be used to implement custom logic for group address or tag events.
User-defined function is executed when a "group write" or “group read” (if checked while
adding the script) event occurs for given group address. Event information is stored in global
event variable.Variable contents:

• dstraw (integer) — raw destination group address
• srcraw (integer) — raw source individual address
• dst (string) — decoded destination group address (for example: 1/1/4)
• src (string) — decoded source individual address (for example: 1.1.2)
• type (string) — type of event, either "groupwrite", "groupread", "groupresponse".

Currently user-defined scripts are bound to "group write" events only.
• dataraw (integer/string) — raw binary data
• datahex (string) — data as a hex-encoded string which can be used to convert value to

Lua variable

40

Note!event variable is available only in Event-based functions, not in Resident and Scheduled.

Note! All event-based scripts are executed in a single queue-like manner. Make sure event

scripts do not contain infinite loops, sleep calls or other blocking parts.

Note! To get event value in scripts, use the following command: a = event.getvalue()

Note! To get event group address object name, use the following command:

a = grp.alias(event.dst)

1.2.3. Resident scripting

Resident scripts are executed infinite amount of times. Scripts are put into inactive state after
each call and are resumed after delay timer expires.

Note!even though resident scripts are executed in parallel they should not have infinite loops or

it will not be possible to reload scripts after editing.

1.2.4. Scheduled scripting

Scheduled scripts are executed when the system time matches the specified script start time.
Scheduled script is run only once after each timer call.

1.2.5. Script editor

When a script is added icon appears in Editorcolumn that allows opening a script in scripting
editor and re-working it with built-in code snippets.

41

The idea is that not knowing the syntaxes you get a helper for writing your own scripts. Code
snippets save also a time and make the coding much more convenient. After clicking on
appropriate snippet, it automatically adds code to the editor field.

There are three main groups of Script editor:

Helpers – predefined code snippets, like if-then statement. Helpers consist of three main sub-
groups:

Conditionals – If Else If, If Then etc.
Loops and iterators – Array, Repeat..Untiletc
Math – Random value, Ceiling, Absolute value, Round etc.
Objects/KNX bus – Get object value, Group read, Group write, Update interval etc.
Storage – Get data from storage, Save data to storage
Script control – Get other script status, enable or disable other scripts
Alerts and logs – Alert, Log variables, Formatted alert
Time functions – Delay script execution
Miscellaneous – Sunrise/sunset etc.
Serial – Communication through internal LogicMachine IO ports
Modbus – Create RTU/TCP connection, Write register, Read register etc.
DMX – Communication with DMX devices

Data types – choose object by data type
Scripts – list of all scripts added in the LogicMachine

42

Code helpers on the right side of the editor

There is a special section in scripting editor which allows quickly find functions, objects or tags
by name and storage variables.

There is also a code shortcut button, which helps with most common function structure.

There are also following helpful button in the script editor, which allows quickly access Error
Logs, Test the script, Enable or disable it.

1.2.6. Object functions

grp provides simplified access to the objects stored in the database and group address request
helpers.

43

Most functions use alias parameter — object group address or unique object name. (e.g. '1/1/1' or
'My object')

grp.getvalue(alias)
Returns value for the given alias or Lua nil when object cannot be found.

grp.find(alias)
Returns single object for the given alias. Object value will be decoded automatically only if the
data type has been specified in the 'Objects' module. Returns Lua nil when object cannot be
found, otherwise it returns Lua table with the following items:

• address — object group address

• updatetime — latest update time in UNIX timestamp format. Use Lua os.date() to convert
to readable date formats

When object data type has been specified in the 'Objects' module the following fields are
available:

• name — unique object name

• datatype — object data type as specified by user

• decoded — set to true when decoded value is available

• value — decoded object value

grp.tag(tags, mode)
Returns Lua table containing objects with the given tag. Tags parameter can be either
Lua table or a string. Mode parameter can be either 'all' (return objects that have all of the given
tags) or 'any' (default — returns objects that have any of the given tags). You can useReturned

object functions on the returned table.

grp.alias(alias)
Converts group address to object name or name to address. Returns Lua nil when object cannot
be found.

1.2.7. Returned object functions, group communication functions

Objects received by using grp.find(alias) or grp.tag(tags, mode) have the following functions
attached to them:

Always check that the returned object was found otherwise calling these functions will result in
an error. See the example below.

object:write(value, datatype)
Sends group write request to object's group address. Data type is taken from the database if not
specified as second parameter. Returns Lua boolean as the result.

object:response(value, datatype)
Similar to object:write. Sends group response request to object's group address.

44

object:read()
Sends group read request to object's group address. Note: this function returns immediately and
cannot be used to return the result of read request. Use event-based script instead.

object:update(value, datatype)
Similar to object:write, but does not send new value to the bus. Useful for objects that are used
only in visualization.

1.2.8. Group communication functions

These functions should only be used if it is required to access objects by group address directly,
it is recommended to use single or multiple object functions.

grp.write(alias, value, datatype)
Sends group write request to the given alias. Data type is taken from the database if not specified
as third parameter. Returns Lua boolean as the result.

grp.response(alias, value, datatype)
Similar to grp.write. Sends group response request to the given alias.

grp.read(alias)
Sends group read request to the given alias. Note: this function returns immediately and cannot
be used to return the result of read request. Use event-based script instead.

grp.update(alias, value, datatype)
Similar to grp.write, but does not send new value to the bus. Useful for objects that are used only
in visualization.

1.2.9. Object function examples

Find object by name and write new value.

1. myobject=grp.find('My object')

2. -- grp.find will return nil if object was not found

3. ifmyobjectthen

4. myobject:write(1)-- update object value with 1

5. end

Find object by address and write new value.

1. myobject=grp.find('1/1/15')

2. -- verify that the requested object was found

3. ifmyobjectthen

4. myobject:write(52.12, dt.float16)-- explicitly set data type to dt.float16 (2-byte

floating point)

45

5. end

Switch all binary objects tagged 'lights' off.

1. lights =grp.tag('lights')

2. lights:write(false)

Group write to the specified group address and data type.

1. grp.write('1/1/1', true, dt.bool)-- write 1-bit 'on' to 1/1/1

2. grp.write('1/1/2', 50, dt.scale)-- write 1-byte 50% to 1/1/2

1.2.10. Data type functions, data types

knxdatatype object provides data encoding and decoding between Lua and KNX data formats.

knxdatatype.decode(value, datatype)
Converts hex-encoded data to Lua variable based on given data type. Data type is specified
either as KNX primary data type (integer between 1 and 16) or a secondary data type (integer
between 1000 and 16000).Return values:

• success — decoded data as Lua variable (type depends on data type), value length in bytes

• error — nil, error string

1.2.11. Data types

The following data types can be used for encoding and decoding of KNX data. Data
representation on Lua level and predefined constants (in bold) is given below:

• 1 bit (boolean) - dt.bool — boolean

• 2 bit (1 bit controlled) - dt.bit2 — number

• 4 bit (3 bit controlled) - dt.bit4 — number

• 1 byte ASCII character - dt.char — string

• 1 byte unsigned integer - dt.uint8 — number

• 1 byte signed integer - dt.int8 — number

• 2 byte unsigned integer - dt.uint16 — number

• 2 byte signed integer - dt.int16 — number

• 2 byte floating point - dt.float16 — number

• 3 byte time / day - dt.time — table with the following items:
o day — number (0-7)
o hour — number (0-23)
o minute — number (0-59)
o second — number (0-59)

• 3 byte date - dt.date — table with the following items:
o day — number (1-31)
o month — number (1-12)
o year — number (1990-2089)

46

• 4 byte unsigned integer - dt.uint32 — number

• 4 byte signed integer - dt.int32 — number

• 4 byte floating point - dt.float32 — number

• 4 byte access control - dt.access — number, currently not fully supported

• 14 byte ASCII string - dt.string — string, null characters ('\0') are discarded during
decoding

1.2.12. Data storage function

storage object provides persistent key-value data storage for user scripts. Only the following Lua
data types are supported:

• boolean

• number

• string

• table

storage.set(key, value)
Sets new value for the given key. Old value is overwritten. Returns boolean as the result and an
optional error string.

storage.get(key, default)
Gets value for the given key or returns default value (nil if not specified) if key is not found in
the data storage.

Note: all user scripts share the same data storage. Make sure that same keys are not used to store
different types of data.

Examples

• The following examples shows the basic syntax of storage.set. Result will return
boolean true since the passed parameters are correct

result=storage.set('my_stored_value_1', 12.21)

• This example will return false as the result because we are trying to store a function
which is not possible.

1. testfn=function(t)

2. return t * t

3. end

4. result =storage.set('my_stored_value_2', testfn)-- this will result in an error

47

• The following examples shows the basic syntax of storage.get. Assuming that key value
was not found, first call will return nil while second call will return number 0 which was
specified as a default value.

1. result =storage.get('my_stored_value_3')-- returns nil if value is not found

2. result =storage.get('my_stored_value_3', 0)-- returns 0 if value is not found

• When storing tables make sure to check the returned result type. Assume we have created
a storage item with key test_object_data.

1. objectdata={}

2. objectdata.temperature=23.1

3. objectdata.scene='default'

4. result =storage.set('test_object_data', objectdata)-- store objectdata variable as

'test_object_data'

• Now we are retrieving data from storage. Data type is checked for correctness.

1. objectdata=storage.get('test_object_data')

2. iftype(objectdata)=='table'then

3. ifobjectdata.temperature> 24 then

4. -- do something if temperature level is too high

5. end

6. end

1.2.13. Alert function

alert(message, [var1, [var2, [var3]]])
Stores alert message and current system time in the main database. All alerts are accessible in the
"Alerts" module. This function behaves exactly as Lua string.format.

Example

1. temperature = 25.3

2. if temperature > 24 then

3. -- resulting message: 'Temperature levels are too high: 25.3'

4. alert('Temperature level is too high: %.1f', temperature)

5. end

1.2.14. Log function

log(var1, [var2, [var3, ...]])
Converts variables to human-readable form and stores them in the main database. All items are
accessible in the "Logs" module.

48

Example

1. -- log function accepts Lua nil, boolean, number and table (up to 5 nested levels) type

variables

2. a ={ key1 ='value1', key2 =2}

3. b ='test'

4. c =123.45

5. -- logs all passed variables

6. log(a, b, c)

1.2.15. Scheduled scripting date/time format

Scheduled scripting uses standard cron format for date/time parameters. Valid values are:

* — execute script every minute, hour or day.

*/N — execute script every N minutes, hours or days. N is an integer, script is executed
when current value divided by N gives 0 in modulo. For example, script with hour
parameter set to */8 will be executed when hour is 0, 8 and 16.

N — execute script exactly at N minute, hour or day.

N-K — execute script when minute, hour or day is between N-K range (inclusive).

N,K — it is possible to specify several N and N-K type parameters separated by comma.
For example, script with minute parameter set to 15,50-52 will get executed when minute is
15, 50, 51 and 52

1.2.16. Time function

os.sleep(delay)
Delay the next command execution for the delay seconds.

os.microtime ()
Returns two values: current timestamp in seconds and timestamp fraction in nanoseconds

os.udifftime (sec, usec)
Returns time difference as floating point value between now and timestamp components passed
to this function (seconds, nanoseconds)

1.2.17. Data Serialization

serialize.encode (value)
Generates a storable representation of a value.

serialize.decode (value)
Creates a Lua value from a stored representation.

49

1.2.18. String functions

This library provides generic functions for string manipulation, such as finding and extracting
substrings, and pattern matching. When indexing a string in Lua, the first character is at position
1 (not at 0, as in C).
Indices are allowed to be negative and are interpreted as indexing backwards, from the end of the
string. Thus, the last character is at position -1, and so on.
The string library provides all its functions inside the table string. It also sets a meta table for
strings where the __index field points to the string table. Therefore, you can use the string
functions in object-oriented style. For instance, string.byte(s, i) can be written as s:byte(i).The
string library assumes one-byte character encodings.

string.trim (str)
Trims the leading and trailing spaces off a given string.

string.split (str, sep)
Splits string by given separator string. Returns Lua table.

string.byte (s [, i [, j]])
Returns the internal numerical codes of the characters s[i], s[i+1], ···, s[j]. The default value for i
is 1;the default value for j is i.Note that numerical codes are not necessarily portable across
platforms.

string.char (···)
Receives zero or more integers. Returns a string with length equal to the number of arguments,
in which each character has the internal numerical code equal to its corresponding argument.
Note that numerical codes are not necessarily portable across platforms.

string.find (s, pattern [, init [, plain]])
Looks for the first match of pattern in the string s. If it finds a match, then find returns the
indices of s where this occurrence starts and ends; otherwise, it returns nil. A third, optional
numerical argument init specifies where to start the search; its default value is 1 and can be
negative. A value of true as a fourth, optional argument plain turns off the pattern matching
facilities, so the function does a plain "find substring" operation, with no characters in pattern
being considered "magic". Note that if plain is given, then init must be given as well. If the
pattern has captures, then in a successful match the captured values are also returned, after the
two indices.

string.format (formatstring, ···)
Returns a formatted version of its variable number of arguments following the description given
in its first argument (which must be a string). The format string follows the same rules as the
printf family of standard C functions. The only differences are that the options/modifiers *, l, L,
n, p, and h are not supported and that there is an extra option, q. The q option formats a string in
a form suitable to be safely read back by the Lua interpreter: the string is written between double
quotes, and all double quotes, newlines, embedded zeros, and backslashes in the string are
correctly escaped when written. For instance, the call

string.format('%q', 'a string with "quotes" and \n new line')

will produce the string:

50

 "a string with \"quotes\" and \

 new line"

The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number as argument, whereas q and s
expect a string. This function does not accept string values containing embedded zeros, except as
arguments to the q option.

string.gmatch (s, pattern)
Returns an iterator function that, each time it is called, returns the next captures from pattern
over strings. If pattern specifies no captures, then the whole match is produced in each call. As
an example, the following loop

1. s ="hello world from Lua"
2. for w instring.gmatch(s, "%a+")do
3. print(w)
4. end

will iterate over all the words from string s, printing one per line. The next example collects all
pairs key=value from the given string into a table:

1. t ={}
2. s ="from=world, to=Lua"
3. for k, v instring.gmatch(s, "(%w+)=(%w+)")do
4. t[k]= v
5. end

For this function, a '^' at the start of a pattern does not work as an anchor, as this would prevent
the iteration.

string.gsub (s, pattern, repl [, n])
Returns a copy of s in which all (or the first n, if given) occurrences of the pattern have been
replaced by are placement string specified by repl, which can be a string, a table, or a function.
gsub also returns, as its second value, the total number of matches that occurred.
If repl is a string, then its value is used for replacement. The character % works as an escape
character:any sequence in repl of the form %n, with n between 1 and 9, stands for the value of
the n-th capture dsub string (see below). The sequence %0 stands for the whole match. The
sequence %% stands for a single %.
If repl is a table, then the table is queried for every match, using the first capture as the key; if
the pattern specifies no captures, then the whole match is used as the key.
If repl is a function, then this function is called every time a match occurs, with all captured
substrings passed as arguments, in order; if the pattern specifies no captures, then the whole
match is passed as a sole argument.
If the value returned by the table query or by the function call is a string or a number, then it is
used as the replacement string; otherwise, if it is false or nil, then there is no replacement (that is,
the original match is kept in the string).

Examples:
x =string.gsub("hello world", "(%w+)", "%1 %1")

 --> x="hello hello world world"

x =string.gsub("hello world", "%w+", "%0 %0", 1)

 --> x="hello hello world"

x =string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")

 --> x="world hello Lua from"

x =string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)

51

--> x="home = /home/roberto, user = roberto"

x =string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function(s)

returnloadstring(s)()

end)

--> x="4+5 = 9"

local t ={name="lua", version="5.1"}

x =string.gsub("$name-$version.tar.gz", "%$(%w+)", t)

--> x="lua-5.1.tar.gz"

string.len (s)
Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are
counted, so"a\000bc\000" has length 5.

string.lower (s)
Receives a string and returns a copy of this string with all uppercase letters changed to
lowercase. All other characters are left unchanged. The definition of what an uppercase letter is
depends on the current locale.

string.match (s, pattern [, init])
Looks for the first match of pattern in the string s. If it finds one, then match returns the captures
from the pattern; otherwise it returns nil. If pattern specifies no captures, then the whole match is
returned. A third, optional numerical argument init specifies where to start the search; its default
value is 1 and can be negative.

string.rep (s, n)
Returns a string that is the concatenation of n copies of the string s.

string.reverse (s)
Returns a string that is the string s reversed.

string.sub (s, i [, j])
Returns the substring of s that starts at i and continues until j; i and j can be negative. If j is
absent, then it is assumed to be equal to -1 (which is the same as the string length). In particular,
the callstring.sub(s,1,j) returns a prefix of s with length j, and string.sub(s, -i) returns a suffix of s
with length i.

string.upper (s)
Receives a string and returns a copy of this string with all lowercase letters changed to
uppercase. All other characters are left unchanged. The definition of what a lowercase letter is
depends on the current locale.

Patterns
Character Class:
A character class is used to represent a set of characters. The following combinations are allowed
in describing a character class:

• x: (where x is not one of the magic characters ^$()%.[]*+-?) represents the character x
itself.
• .: (a dot) represents all characters.
• %a: represents all letters.
• %c: represents all control characters.
• %d: represents all digits.
• %l: represents all lowercase letters.

52

• %p: represents all punctuation characters.
• %s: represents all space characters.
• %u: represents all uppercase letters.
• %w: represents all alphanumeric characters.
• %x: represents all hexadecimal digits.
• %z: represents the character with representation 0.
• %x: (where x is any non-alphanumeric character) represents the character x. This is the
standard way to escape the magic characters. Any punctuation character (even the non
magic) can be preceded by a '%' when used to represent itself in a pattern.
• [set]: represents the class which is the union of all characters in set. A range of
characters can be specified by separating the end characters of the range with a '-'. All
classes %x described above can also be used as components in set. All other characters in
set represent themselves. For example,[%w_] (or [_%w]) represents all alphanumeric
characters plus the underscore, [0-7] represents the octal digits, and [0-7%l%-] represents
the octal digits plus the lowercase letters plus the '-'character.
• The interaction between ranges and classes is not defined. Therefore, patterns like [%a-
z]or [a-%%] have no meaning.
• [^set]: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase letter
represents the complement of the class. For instance, %S represents all non-space characters.
The definitions of letter, space, and other character groups depend on the current locale. In
particular, the class [a-z] may not be equivalent to %l.

Pattern Item:
A pattern item can be:

• a single character class, which matches any single character in the class;
• a single character class followed by '*', which matches 0 or more repetitions of
characters in the class. These repetition items will always match the longest possible
sequence;
• a single character class followed by '+', which matches 1 or more repetitions of
characters in the class. These repetition items will always match the longest possible
sequence;
• a single character class followed by '-', which also matches 0 or more repetitions of
characters in the class. Unlike '*', these repetition items will always match the shortest
possible sequence;
• a single character class followed by '?', which matches 0 or 1 occurrence of a character
in the class;
• %n, for n between 1 and 9; such item matches a substring equal to the n-th captured
string (see below);
• %bxy, where x and y are two distinct characters; such item matches strings that start
with x, end with y, and where the x and y are balanced. This means that, if one reads the
string from left to right, counting +1 for an x and -1 for a y, the ending y is the first y
where the count reaches 0. For instance, the item %b() matches expressions with
balanced parentheses.

Pattern:
A pattern is a sequence of pattern items. A '^' at the beginning of a pattern anchors the match at
the beginning of the subject string. A '$' at the end of a pattern anchors the match at the end of
the subject string. At other positions, '^' and '$' have no special meaning and represent
themselves.

53

Captures:
A pattern can contain sub-patterns enclosed in parentheses; they describe captures. When a
match succeeds, the substrings of the subject string that match captures are stored (captured) for
future use. Captures are numbered according to their left parentheses. For instance, in the pattern
"(a*(.)%w(%s*))",the part of the string matching "a*(.)%w(%s*)" is stored as the first capture
(and therefore has number 1);the character matching "." is captured with number 2, and the part
matching "%s*" has number 3.
As a special case, the empty capture () captures the current string position (a number). For
instance, if we apply the pattern "()aa()" on the string "flaaap", there will be two captures: 3 and
5.A pattern cannot contain embedded zeros. Use %z instead.

1.2.19. Input and output functions

io.exists (path)
Checks if given path (file or directory) exists. Return boolean.

io.readfile (file)
Reads whole file at once. Return file contents as a string on success or nil on error.

io.writefile (file, data)
Writes given data to a file. Data can be either a value convertible to string or a table of such
values. When data is a table then each table item is terminated by a new line character. Return
boolean as write result when file can be open for writing or nil when file cannot be accessed.

Example: Write event status to log file located on plugged USB flash drive:

1. value = knxdatatype.decode(event.datahex, dt.bool)

2. data =string.format('%s value is %s', os.date('%c'), tostring(value))

3. -- write to the end of log file preserving all previous data

4. file =io.open('/mnt/usb/log.txt', 'a+')

5. file:write(data .. '\r\n')

6. file:close()

Output:

Mon Jan 3 05:25:13 2011 value is false
Mon Jan 3 05:25:14 2011 value is true
Mon Jan 3 05:25:32 2011 value is false
Mon Jan 3 05:25:33 2011 value is true

Example: Read data from file (config in format key=value)

1. for line inio.lines('/mnt/usb/config.txt')do

2. -- split line by '=' sing

3. items = line:split('=')

4. -- two items, line seems to be valid

5. if #items == 2 then

6. key = items[1]:trim()

7. value = items[2]:trim()

8. alert('[config] %s = %s', key, value)

9. end

10. end

54

1.2.20. Script control functions

script.enable('scriptname')
Enable the script with the name scriptname.

script.disable('scriptname')
Disable the script with the name scriptname.

status = script.status('scriptname')
Returns true/false if script is found, nil otherwise

1.2.21. JSON library

Note: json is not loaded by default, use require('json') before calling any functions from this
library.

json.encode (value)
Converts Lua variable to JSON string. Script execution is stopped in case of an error.

json.pencode (value)
Converts Lua variable to JSON string in protected mode, returns nil on error.

json.decode (value)
Converts JSON string to Lua variable. Script execution is stopped in case of an error.

json.pdecode (value)
Converts JSON string to Lua variable in protected mode, returns nil on error.

1.2.22. Conversion

Compatibility layer:lmcore is an alias of cnv.

cnv.strtohex (str)
Converts given binary string to a hex-encoded string.

cnv.hextostr (hex [, keepnulls])
Converts given hex-encoded string to a binary string. NULL characters are ignored by default,
but can be included by setting second parameter to true.

cnv.tonumber (value)
Converts the given value to number using following rules: numbers and valid numeric strings are
treated as is, boolean true is 1, boolean false is 0, everything else is nil.

cnv.hextoint(hexvalue, bytes)

55

Converts the given hex string to and integer of a given length in bytes.

cnv.inttohex(intvalue, bytes)
Converts the given integer to a hex string of given bytes.

cnv.strtohex(str)
Converts the given binary string to a hex-encoded string.

cnv.hextostr(hexstr)
Converts the given hex-encoded string to a binary string.

1.2.23. Bit operators

bit.bnot (value)
Binary not

bit.band (x1 [, x2...])
Binary and between any number of variables

bit.bor (x1 [, x2...])
Binary and between any number of variables

bit.bxor (x1 [, x2...])
Binary and between any number of variables

bit.lshift (value, shift)
Left binary shift

bit.rshift (value, shift)
Right binary shift

56

1.2.24. Input and Output Facilities

The I/O library provides two different styles for file manipulation. The first one uses implicit file
descriptors; that is, there are operations to set a default input file and a default output file, and all
input/output operations are over these default files. The second style uses explicit file
descriptors.
When using implicit file descriptors, all operations are supplied by table io. When using explicit
file descriptors, the operation io.open returns a file descriptor and then all operations are supplied
as methods of the file descriptor.
The table io also provides three predefined file descriptors with their usual meanings from C:
io.stdin, io.stdout, and io.stderr. The I/O library never closes these files.
Unless otherwise stated, all I/O functions return nil on failure (plus an error message as a second
result and a system-dependent error code as a third result) and some value different from nil on
success.

io.close ([file])
Equivalent to file:close(). Without a file, closes the default output file.

io.flush ()
Equivalent to file:flush over the default output file.

io.input ([file])
When called with a file name, it opens the named file (in text mode), and sets its handle as the
default input file. When called with a file handle, it simply sets this file handle as the default
input file. When called without parameters, it returns the current default input file. In case of
errors this function raises the error, instead of returning an error code.

io.lines ([filename])
Opens the given file name in read mode and returns an iterator function that, each time it is
called, returns a new line from the file. Therefore, the construction

for line in io.lines(filename) do body end

will iterate over all lines of the file. When the iterator function detects the end of file, it returns
nil (to finishthe loop) and automatically closes the file.
The call io.lines() (with no file name) is equivalent to io.input():lines(); that is, it iterates over the
lines of the default input file. In this case it does not close the file when the loop ends.

io.open (filename [, mode])
This function opens a file, in the mode specified in the string mode. It returns a new file handle,
or, in case of errors, nil plus an error message. The mode string can be any of the following:

• "r": read mode (the default);
• "w": write mode;
• "a": append mode;
• "r+": update mode, all previous data is preserved;
• "w+": update mode, all previous data is erased;
• "a+": append update mode, previous data is preserved, writing is only allowed at the
end of file.

The mode string can also have a 'b' at the end, which is needed in some systems to open the file
in binary mode. This string is exactly what is used in the standard C function fopen.

57

io.output ([file])
Similar to io.input, but operates over the default output file.

1.2.25. Mathematical functions

This library is an interface to the standard C math library. It provides all its functions inside the
table math.

math.abs (x)
Returns the absolute value of x.

math.acos (x)
Returns the arc cosine of x (in radians).

math.asin (x)
Returns the arc sine of x (in radians).

math.atan (x)
Returns the arc tangent of x (in radians).

math.atan2 (y, x)
Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to find the
quadrant of the result. (It also handles correctly the case of x being zero.)

math.ceil (x)
Returns the smallest integer larger than or equal to x.

math.cos (x)
Returns the cosine of x (assumed to be in radians).

math.cosh (x)
Returns the hyperbolic cosine of x.

math.deg (x)
Returns the angle x (given in radians) in degrees.

math.exp (x)

Returns the value ��.

math.floor (x)
Returns the largest integer smaller than or equal to x.

math.fmod (x, y)
Returns the remainder of the division of x by y that rounds the quotient towards zero.

math.frexp (x)

Returns m and e such that x = �2�, e is an integer and the absolute value of m is in the range
[0.5, 1) (or zero when x is zero).

math.huge

58

The value HUGE_VAL, a value larger than or equal to any other numerical value.
math.ldexp (m, e)

Returns �2�,(e should be an integer).

math.log (x)
Returns the natural logarithm of x.

math.log10 (x)
Returns the base-10 logarithm of x.

math.max (x, ···)
Returns the maximum value among its arguments.

math.min (x, ···)
Returns the minimum value among its arguments.

math.modf (x)
Returns two numbers, the integral part of x and the fractional part of x.

math.pi
The value of pi.

math.pow (x, y)

Returns ��. (You can also use the expression x^y to compute this value.)

math.rad (x)
Returns the angle x (given in degrees) in radians.

math.random ([m [, n]])
This function is an interface to the simple pseudo-random generator function rand provided by
ANSI C. (No guarantees can be given for its statistical properties.)
When called without arguments, returns a uniform pseudo-random real number in the range
[0,1). When called with an integer number m, math. random returns a uniform pseudo-random
integer in the range [1,m]. When called with two integer numbers m and n, math. random returns
a uniform pseudo-random integer in the range [m, n].

math.randomseed (x)
Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal sequences of
numbers.

math.sin (x)
Returns the sine of x (assumed to be in radians).

math.sinh (x)
Returns the hyperbolic sine of x.

math.sqrt (x)
Returns the square root of x. (You can also use the expression x^0.5 to compute this value.)

math.tan (x)
Returns the tangent of x (assumed to be in radians).

59

math.tanh (x)
Returns the hyperbolic tangent of x.

1.2.26. Table manipulations

This library provides generic functions for table manipulation. It provides all its functions inside
the table. Most functions in the table library assume that the table represents an array or a list.
For these functions, when we talk about the "length" of a table we mean the result of the length
operator.

table.concat (table [, sep [, i [, j]]])
Given an array where all elements are strings or numbers, returns table[i]..sep..table[i+1] ···

sep..table[j]. The default value for sep is the empty string, the default for i is 1, and the default
for j is the length of the table. If i is greater than j, returns the empty string.

table.insert (table, [pos,] value)
Inserts element value at position pos in table, shifting up other elements to open space, if
necessary. The default value for pos is n+1, where n is the length of the table, so that a
calltable.insert(t,x) inserts x at the end of table t.

table.maxn (table)
Returns the largest positive numerical index of the given table, or zero if the table has no positive
numerical indices. (To do its job this function does a linear traversal of the whole table.)

table.remove (table [, pos])
Removes from table the element at position pos, shifting down other elements to close the space,
if necessary. Returns the value of the removed element. The default value for pos is n, where n is
the length of the table, so that a call table.remove(t) removes the last element of table t.

table.sort (table [, comp])
Sorts table elements in a given order, in-place, from table[1] to table[n], where n is the length of
the table. If comp is given, then it must be a function that receives two table elements, and
returns true when the first is less than the second (so that not comp(a[i+1],a[i]) will be true after
the sort). If comp is not given, then the standard Lua operator < is used instead.
The sort algorithm is not stable; that is, elements considered equal by the given order may have
their relative positions changed by the sort.

1.2.27. Operating system facilities

os.date ([format [, time]])
Returns a string or a table containing date and time, formatted according to the given string
format. If the time argument is present, this is the time to be formatted (see the os.time function
for a description of this value). Otherwise, date formats the current time.
If format starts with '!', then the date is formatted in Coordinated Universal Time. After this
optional character, if format is the string "*t", then date returns a table with the following fields:
year (four digits),month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday
(weekday, Sunday is 1), yday (dayof the year), and isdst (daylight saving flag, a boolean).
If format is not "*t", then date returns the date as a string, formatted according to the same rules
as the C function strftime.

60

When called without arguments, date returns a reasonable date and time representation that
depends on the host system and on the current locale (that is, os.date() is equivalent to
os.date("%c")).

os.difftime (t2, t1)
Returns the number of seconds from time t1 to time t2. In POSIX, Windows, and some other
systems, this value is exactly t2-t1.

os.execute ([command])
This function is equivalent to the C function system. It passes command to be executed by an
operating system shell. It returns a status code, which is system-dependent. If command is
absent, then it returns nonzero if a shell is available and zero otherwise.

os.exit ([code])
Calls the C function exit, with an optional code, to terminate the host program. The default value
for code is the success code.

os.getenv (varname)
Returns the value of the process environment variable varname, or nil if the variable is not
defined.

os.remove (filename)
Deletes the file or directory with the given name. Directories must be empty to be removed. If
this function fails, it returns nil, plus a string describing the error.

os.rename (oldname, newname)
Renames file or directory named oldname to newname. If this function fails, it returns nil, plus a
string describing the error.

os.time ([table])
Returns the current time when called without arguments, or a time representing the date and time
specified by the given table. This table must have fields year, month, and day, and may have
fields hour, min, sec,and isdst (for a description of these fields, see the os.date function).
The returned value is a number, whose meaning depends on your system. In POSIX, Windows,
and some other systems, this number counts the number of seconds since some given start time
(the "epoch"). In other systems, the meaning is not specified, and the number returned by time
can be used only as an argument to date and difftime.

os.tmpname ()
Returns a string with a file name that can be used for a temporary file. The file must be explicitly
opened before its use and explicitly removed when no longer needed. On some systems
(POSIX), this function also creates a file with that name, to avoid security risks. (Someone
else might create the file with wrong permissions in the time between getting the name and
creating the file.) You still have to open the file to use it and to remove it (even if you do not use
it).
When possible, you may prefer to use io.tmpfile, which automatically removes the file when the
program
ends.

61

1.2.28. Extended function library

toboolean(value)
Converts the given value to boolean using following rules: nil,
boolean false, 0, empty string, '0' string are treated as false, everything else as true

string.split(str, sep)
Splits the given string into chunks by the given separator. Returns Lua table.

knxlib.decodeia(indaddressa, indaddressb)
Converts binary-encoded individual address to Lua string. This function accepts either one or
two arguments (interpreted as two single bytes).

knxlib.decodega(groupaddressa, groupaddressb)
Converts binary-encoded group address to Lua string. This function accepts either one or two
arguments (interpreted as two single bytes).

knxlib.encodega(groupaddress, separate)
Converts Lua string to binary-encoded group address. Returns group address a single Lua
number when second argument is nil or false and two separate bytes otherwise.

ipairs (t)
Returns three values: an iterator function, the table t, and 0, so that the construction

for i,v inipairs(t)dobodyend

will iterate over the pairs (1,t[1]), (2,t[2]), · · · , up to the first integer key absent from the table.

next (table [, index])
Allows a program to traverse all fields of a table. Its first argument is a table and its second
argument is an index in this table. next returns the next index of the table and its associated
value. When called with nil as its second argument, next returns an initial index and its
associated value. When called with the last index, or with nil in an empty table, next returns nil.
If the second argument is absent, then it is interpreted asnil. In particular, you can use next(t) to
check whether a table is empty. The order in which the indices are enumerated is not specified,
even for numeric indices. (To traverse a table in numeric order, use a numerical for or the ipairs
function.)The behavior of next is undefined if, during the traversal, you assign any value to a
non-existent field in the table. You may however modify existing fields. In particular, you may
clear existing fields.

pairs (t)
Returns three values: the next function, the table t, and nil, so that the construction

for k,v inpairs(t)do body end

will iterate over all key–value pairs of table t.

tonumber (e [, base])
Tries to convert its argument to a number. If the argument is already a number or a string
convertible to a number, then tonumber returns this number; otherwise, it returns nil.

62

An optional argument specifies the base to interpret the numeral. The base may be any integer
between 2and 36, inclusive. In bases above 10, the letter 'A' (in either upper or lower case)
represents 10, 'B'represents 11, and so forth, with 'Z' representing 35. In base 10 (the default), the
number can have a decimal part, as well as an optional exponent part. In other bases, only
unsigned integers are accepted.

tostring (e)
Receives an argument of any type and converts it to a string in a reasonable format. For complete
control of how numbers are converted, use string.format.
If the meta table of e has a "__tostring" field, then tostring calls the corresponding value with e
as
argument, and uses the result of the call as its result.

type (v)
Returns the type of its only argument, coded as a string. The possible results of this function are
"nil" (astring, not the value nil), "number", "string", "boolean", "table", "function", "thread", and
"userdata".

1.2.29. User libraries

User libraries usually contain user defined functions which are later called from other scripts.

You have to include your library in the script with the following command:
require(‘user.test’)unless you have enabled Auto load library.

Secure the code

There is an option keep source available for user libraries. Once disabled, the code is compiled in
the binary form and can’t be seen for further editing. If this option is enabled, the source code is
seen in the editor.

63

Auto load library means that the library will be automatically loaded so you don’t have to use
require when writing scripts. Also this have to be checked if Block programming is used.

1.2.30. Common functions

Common functions contains library of globally used functions. They can be called from any
script, any time, without special including like with user libraries. Functions like sunrise/sunset,
Email are included by default in Common functions.

1.2.31. Start-up (init) script

Init script is used for initialization on specific system or bus values on system start. Init script is
run each time after system is restarted for some reason.

64

1.2.32. Tools

� Export helpers – export scripting helpers
� Import helpers – import scripting helpers
� Restore helpers – restore default scripting helpers
� Backup user scripts – backup all scripts in *.gz file
� Restore from archive – restore script from archive (*.gz) file with two possibilities:

o Remove existing scripts and import from backup
o Append keeping existing (s) scripts

� Print script listings – shows all scripts with codes in list format sorted by Categories.

65

� Show logs window – show logs in separate window

1.3. Objects

List of KNX network objects appears in Objects menu. The object appears in the list by way of:

• sniffing the bus for telegrams from unknown group addresses (if enabled in Utilities)

• adding manually

• importing ESF file (in Utilities)

66

1.3.1. Object parameters

To change the settings for existing or new objects, press on the specific list entry.

� Object name – Name for the object
� Group address – Group address of this object
� Data type – KNX data type for the object. This has to be set once the LM sniffs the

new object for proper work.
� Units / suffix – units for the object which will appear on the visualization along with

the value
� Log – enable logging for this object. Logs will appear in Objects logs menu.
� High priority log – mark the object for high priority logging; when the log database is

cleared, first standard logs are cleared, only then high priority
� Export – Make object visible by remote XML requests and in BACnet network (if

KNX – BACnet gateway functionality is used)
� Poll interval (seconds) – perform automatic object read after some time interval
� Tags – assign this object to some tag which can be later used in writing scripts, for

example, All_lights_first_floor.
� Current value– Current value of the object
� Object comments – Comment for the object

There is a possibility to sort the objects by one of the following – Name, Group address, Data
type, Current value, Tags, Comments

67

1.3.2. Object visualization parameters

By pressing on the button of the corresponding object you can set specific visualization
parameters for this type of object.

1 bit

• Control type – type of the visual control element

o Toggle
o Checkbox

4 bit (3 bit controlled)

• Step size – step size for example for blinds control
2 bit (1 bit controlled), 1 byte unsigned integer (scale), 1 byte signed integer, 2 byte unsigned
integer, 2 byte signed integer, 2 byte floating point (temperature), 4 byte unsigned integer, 4 byte
signed integer, 4 byte floating point

1byte

68

• Control type – type of the visual control element
o Slider

o Direct input / Step +/-

• Minimum value

• Maximum value

1.3.3. Change the object state

In the object list, by pressing on the button, you can change the state of the object.
The appearance of the New value depends on what visualization parameters are set for specific
object.

69

1.3.4. Custom values

If special value naming is necessary, use this icon to set it up (only for Boolean and
Integer data types)

1.3.5. Object control bar

� Add new object – Manually add new object to the list
� Auto update enabled –Specifies either the object list is updated automatically or not
� Clear – Clear the list of group addresses
� Next/Previous page – move to next or previous page
� Refresh – refresh the object list
� Mass edit – mass edit objects by a specific criteria

70

There is also the following bar on the bottom of the configuration screen:

� CPU/IO –Load average. The load average represents the average system load over a
period of time. It conventionally appears in the form of three numbers which
represent the system load during the last one-, five-, and fifteen-minute periods. More
on UNIX style load calculation can be found here:
http://en.wikipedia.org/wiki/Load_(computing)#Unix-style_load_calculation

� Memory – memory usage in %
� KNX/IP / KNX/TP – type of connection to KNX bus. If KNX/TP is set and it is not

available, there will be error notification
� Sync project data – save all project data to internal flash by pressing this button.

Otherwise the data is saved once in 30 minutes from RAM to Flash, or when Reboot
or Shutdown commands are sent

1.3.6. Filter objects

On the left side of the object list there is filtering possible. To perform the filtering type the
name, group address, tag or specify the data type of the object and press on Filter button.

71

Match mode:
All tags – represents AND function when all tags should match
Any tag – represents OR function when any one of listed should match

1.4. Object logs

Object historical telegrams are available in Object logs. Once logging is enabled for object, all
it’s further history will be logged.

Filtering is available when there is a need to find specific period information

� Start date – start date and time for log filtering
� End date – start date and time for log filtering
� Name or group address – specific name or group address of object

72

� Tags – tag names
� Value – specific object value
� Source address – specific source address

You can clear all logs by pressing on Clear button.

Size of log is defined in Utilities �General Configuration

1.4.1. Export logs

Example

Once an hour, make CSV file with all objects logs and send to external FTP server with IP
192.168.1.11, login ‘ftplogin‘, password ‘ftppassword‘.

• In Scripting -> Scheduled add the script which will run once an hour

73

• Add the following code in Script editor for this particular script.

1. require('socket.ftp')

2.

3. -- ftp file

4. ftpfile=string.format('ftp://ftplogin:ftppassword@192.168.1.11/%s.csv', os.date('%Y-

%m-%d_%H-%M'))

5. -- get past hour data (3600 seconds)

6. logtime=os.time() - 60*60

7.

8. -- list of objects by id

9. objects ={}

10.

11. -- objects with logging enabled

12. query ='SELECT address, datatype, name FROM objects WHERE disablelog=0'

13. for _, object inipairs(db:getall(query))do

14. objects[tonumber(object.address)]={

15. datatype=tonumber(object.datatype),

16. name =tostring(object.name or''),

17. }

18. end

19.

20. -- csv buffer

21. buffer ={'"date","address","name","value"'}

22.

23. -- get object logs

24. query='SELECT src, address, datahex, logtime, eventtype FROM objectlog WHERE

logtime>= ? ORDER BY id DESC'

25. for _, row inipairs(db:getall(query, logtime))do

26. object = objects[tonumber(row.address)]

27.

74

28. -- found matching object and event type is group write

29. if object androw.eventtype=='write'then

30. datatype=object.datatype

31.

32. -- check that object datatype is set

33. ifdatatypethen

34. -- decode data

35. data =knxdatatype.decode(row.datahex, datatype)

36.

37. -- remove null chars from char/string datatype

38. ifdatatype==dt.charordatatype==dt.stringthen

39. data =data:gsub('%z+', '')

40. -- date to DD.MM.YYYY

41. elseifdatatype==dt.datethen

42. data =string.format('%.2d.%.2d.%.2d', data.day, data.month, data.year)

43. -- time to HH:MM:SS

44. elseifdatatype==dt.timethen

45. data =string.format('%.2d:%.2d:%.2d', data.hour, data.minute,

data.second)

46. end

47. else

48. data =''

49. end

50.

51. -- format csv row

52. logdate=os.date('%Y.%m.%d %H:%M:%S', row.logtime)

53. csv=string.format('%q,%q,%q,%q', logdate, knxlib.decodega(row.address),

object.name, tostring(data))

54.

55. -- add to buffer

56. table.insert(buffer, csv)

57. end

58. end

59.

60. -- upload to ftp only when there's data in buffer

61. if #buffer > 1 then

62. result, err =socket.ftp.put(ftpfile, table.concat(buffer, '\r\n'))

63. end

64.

65. -- error while uploading

66. if err then

67. alert('FTP upload failed: %s', err)

68. end

75

1.5. Schedulers

Schedulers contain administration of user mode schedulers. Schedulers allow for end user to
control KNX group address values based on the date or day of the week.

1.5.1. Add new scheduler

By clicking on the Schedulers � Add new scheduler you will see such parameter window:

� Object – the object group address which will be controlled by scheduler
� Active – define this scheduler as active or not
� Name – name of the scheduler
� Start date – start date of the scheduler
� End date – end date of the scheduler

76

1.5.2. Scheduler events

Event can be added both in administrator interface as well as by end user in the special User

mode schedulers interface.

Active – define the event active or not
Value – value to send to the group address when the event will be triggered
Start time – start time for the event
Days of the week – days of the week when the event will be triggered.
 Hol– holidays which are defined in Holidays tab

1.5.3. Scheduler holidays

Once the event will be marked to run in Hol, Holiday entries will be activated.

77

Name – the name of the holiday entry
Date – date of the holiday

1.6. Trend logs

Trends logs are administration of user mode trends, used to see historical object graphical values,
compare with other period values.

1.6.1. Add new trend log

Object – choose from list of object the one to make trends for
Name – name of the trend
Log type [Counter, Absolute value] – type of the log. Counter type is used to count the
date, Absolute value – saves the actual readings
1 minute data – average value of 1 minute for specific time interval data will be shown
on the trend. E.g. if 1 hour – trend step will be 1 hour with average 60 readings data
Hourly data – average value of hourly data for specific time interval

78

Daily data –average value of daily data for specific time interval
Monthly data – average value of monthly data for specific time interval

Note! One trend data point reading takes 8bytes of flash memory. E.g. reading some
value once in every 10 minutes, will consume ~0.4MB of flash each year.

1.6.2. Trend logs functions

To process logged information in trends, you can use built in trend log functions from scripting.

Include library before calling trend log functions:

require('genohm-scada.trends')

Fetch one or many values for the given period:

trends.fetch(name, mode, period)

trends.fetchone(name, mode, period)

Parameters:

• name – trend log name, required

• mode – either 'day', 'month' or 'year', required

• period – optional, will use current date if not specified
If specified, must be a Lua table with the following fields:

day – required for day mode only
month – required for day and month modes
year – required for all modes

Return values:

fetch returns Lua table with values for the given period or nil on error. Number of values in the
table depends on period and log retention settings. For example, in month mode this function can
return values for each day or only a single value for the whole month

fetchone returns single value for the given period or nil on error

Example:

require('genohm-scada.trends')

-- fetch current value

today = trends.fetchone('Gas', 'day')

-- get current date as table and set day to yesterday

79

date = os.date('*t')

date.day = date.day - 1

-- fetch previous value

yesterday = trends.fetchone('Gas', 'day', date)

trends.NaN value is used for points which contain invalid values or cannot be found.
The default value is 0, but it can also be set to 0 / 0 (NaN - not a number).

Example:

require('genohm-scada.trends')

-- use not a number for invalid value

trends.NaN = 0 / 0

-- get total hot water usage for year 2011

value = trends.fetchone('Hot Water', 'year', { year = 2011 })

-- NaN ~= NaN, means value was not found

if value ~= value then

 return

end

80

1.7. Visualization structure

In Vis.structure menu the structure of the visualization is defined and visualization backgrounds
are uploaded.

1.7.1. Levels / Plans

By default there is Main level added. To add a new level/building, press “Add new level” button.
Please note that you can limit access to this specific level by adding PIN code.

81

You can also add a new level by importing it from the file (which is exported on other LM for
example). Press Import button for this purpose. Object linkage can be either cleared or imported
as-is.

Once a new level is added, you can add second level or upload floor pictures related to this

particular building. To add a new entry, click on the green icon , to delete a specific entry

press on the red icon .

When adding new plan, the following parameters should be defined:

82

� Parent – name of parent level
� Name – name for the plan
� Plan size – plan size in pixels. There are predefined resolutions available when

clicking on the icon on the right size of this parameter:

� Layout – layout for this specific plan. All object from Layout will be duplicated on

this particular plan including background color and plan image if they are not defined
separately for this specific plan

� Usermode visualization [Show, Show and make default, Hide] – visibility for this
particular plan in Usermode visualization

� Touch visualization [Show, Show and make default, Hide]– visibility for this
particular plan in Touch visualization

� PIN code – specify PIN code to access the plan
� Primary background image – choose primary background image from the list added

in Vis.graphics � Images/Backgrounds
� Secondary background image – choose secondary background image from the list

added in Vis.graphics � Images/Backgrounds
� Background color – choose background color of the plan
� Touch background color – define a color for touch visualization
� Repeat background image – either to show the image once or repeat it and fill the

whole plan
� Fixed primary background – specify if first background image should be fixed. By

enabling this, you can enable Parallax effect for your visualization
� Admin only access – enable admin only access for this floor

83

When clicking on Background image, the following window appears with background images
which has to be added in Vis.graphics � Images/Backgroundsin advance:

You can duplicate the plan with all its objects and settings by pressing on icon.
Levels can be sorted by pressing and icons. You can export the plan structure by clicking

in this icon

1.7.2. Layouts / Widgets

Layouts are used as templates for further use when adding Levels in Levels/Plans tab.
Layouts will not be visible from the Usermode/Touch visualizations. When you add any
background, objects to layouts level in Visualization, they will automatically appear on all linked
Levels.

84

� Parent – name of parent layout
� Name – name for the layout
� Plan size – plan size in pixels. There are predefined resolutions available when

clicking on the icon on the right size of this parameter
� Primary background image – choose primary background image from the list added

in Vis.graphics � Images/Backgrounds
� Secondary background image – choose secondary background image from the list

added in Vis.graphics � Images/Backgrounds
� Background color – choose background color of the plan
� Touch background color – define a color for touch visualization
� Repeat background image – either to show the image once or repeat it and fill the

whole plan
� Fixed primary background – specify if first background image should be fixed. By

enabling this, you can enable Parallax effect for your visualization

Widgets are used to combine several objects under one object in visualization.
Background image for the widget should be added in Vis.graphics � Images/Backgrounds in
advance.

� Parent – name of parent widget
� Name – name for the widget
� Plan size – plan size in pixels. There are predefined resolutions available when

clicking on the icon on the right size of this parameter
� Widget position – default position of the widget on the screen
� Primary background image – choose primary background image from the list added

in Vis.graphics � Images/Backgrounds
� Background color – choose background color of the widget
� Touch background color – define a color for touch visualization
� Repeat background image – either to show the image once or repeat it and fill the

whole plan
� Fixed primary background – specify if first background image should be fixed. By

enabling this, you can enable Parallax effect for your visualization

85

When you have defined the widget in Layouts/Widgets tab, you can add objects to it in
Visualization tab.

When you have added necessary objects to the widget, you can choose it when adding objects for
main Levels e.g. Bedroom in Main level.

86

Once added, you can try out the widget in Usermode visualization by clicking on added object
(temperature sensor icon on the left), the widget appears on click.

1.8. Visualization

After the building and floor structure is defined in Vis.structure tab, it is visualized in
Visualization tab. Controlled and monitored objects can be added and managed in this section.

Both side bars can be minimized by pressing on icon making the map more visible especially
on small displays.

1.8.1. Plan editor

Plan editor is located on the right side of the visualization map. By clicking on Unlock current

plan for editing button, the following main menus appear for configuration:

� Object – new object to be added to the map
� Link – linking several floors with special icons
� Text Label – text label to put on visualization
� Image – Add specific image on the visualization
� Frame – add frame object to the visualization

87

� Gauge – Metering gauge
� Camera – IP web camera integration into visualization
� Graph – Real-time graph to monitor value of scale-type objects

While in editing mode, on the left side you can change plan resolution on the fly

When some object is selected and in the editing mode, there appears Delete / Duplicate buttons
so you can either delete or copy the object

1.8.2. Object

88

� Main object – list of existing group addresses on KNX/EIB bus, the ones available for
configuration in Objects tab

� Status object – list of status objects on KNX/EIB bus
� Custom name – Name for the object
� Read-only – the object is read-only, no write permission
� Hide in touch– do not show this object in Touch Visualization

� Hide background– Hide icon background
� Send fixed value– Allows to send specific value to the bus each time the object is pressed
� No bus write – do not send telegram into the bus once clicked on this object in

Usermode/Touch visualizations
� PIN code – PIN code which will be asked to provide when click on this object to perform

group write
� Widget – specify widget which will be launched when click on this object
� Display mode [icon and value; icon; value] – how to display the object
� Touch icon – icon for Touch visualization
� On icon – On state icon for binary-type objects. Icons library is located in Vis.graphics

� Icons tab

� Off icon –Off state icon for binary-type objects. Icons library is located in Vis.graphics

� Icons tab

� Additional classes – additional CSS classes for the element
� Show control –scale-type object specific setting defining either to show the control in

Usermode visualization without icon

For scale-type objects additional button appears while specifying parameters – Additional icons.

It’s possible to define different icons for different object values in the window.

On the bottom of setting you can see element position and size parameters, which you can freely

change. By pressing you will reset size. By pressing you can lock aspect ratio.

Once the object parameters are defined, press Add to plan button and newly created object will
appear. You can move the object to the location it will be located. Note that while being in
editing mode, the object will not work. When all necessary objects are added, press Save and

reload plan button so the objects starts functioning.

89

You can edit each added object when clicking on it while in Editing mode.

1.8.3. Link

In order to make visualization more convenient, there are floor links integrated. You can add
icons or text on the map, which links to other floors.

� Link to – Linked plan name or link to Schedulers / Trends or External Link (use the
link in form http://www.openrb.com)

� Custom name – name for the link
� Hide in touch – do not show this object in Touch Visualization

� Hide background– Hide icon background
� Display mode [Icon; Value] – either to show icon or its value
� Icon – Icon which will be showed in visualization (if chosen, no further parameters

are available)
� Active state icon – active state icon if the link is to current plan (in case you have

several smaller plans on one visualization and want to display the current one)
� Additional classes – additional CSS classes for the element

Once the floor link parameters are defined, press Add to plan button and newly created object
will appear. You can move the object to the location it will be located. Note that while being in
editing mode, the object will not work. Press on Save and reload plan button so the objects starts
functioning.

90

1.8.4. Text Label

Text labels can be added and moved across the visualization map.

� Text – label text
� Font size – label font size
� Text style – style of the text – bold, italic, underscored
� Custom font – font name
� Font color– label font color
� Additional classes – additional CSS classes for the element

Once the label parameters are defined, press Add to plan button and newly created object will
appear on the map. You can move the object to the location it will be located. Press on Save and

reload plan button so the objects starts functioning.

1.8.5. Image

Image section allows adding images from the internet into the visualization map. Useful for
example, to grab dynamic weather cast images.

91

� Image source [Local; Remote] – image source location

� Source url / Select image – Source URL of the image or image from local database
� Image size – width and height of the image
� External link – external link URL when pressing on the image
� Additional classes – additional CSS classes for the element

Once the image parameters are defined, press Add to plan button and newly created object will
appear on the map. You can move the object to the location it will be located. Press on Save and

reload plan button so the objects starts functioning.

1.8.6. Frame

With Frame functionality you can integrate 3rd party applications, we resources or local
Trends/Schedulers into one common visualization.

92

� Source [Url, Schedulers; Trend logs] – frame source

� Url – Source URL of the page to integrate
� Frame size – width and height of the frame
� Custom name – custom name of the frame object
� External link – external link URL when pressing on the image
� Hide in Touch – defines either to hide frame in Touch visualization
� Additional classes – additional CSS classes for the element

1.8.7. Gauge

Gauge allows visualizing and changing object value in the gauge.

� Data object – KNX group address
� Gauge size – size of the gauge
� Custom name – custom name for the object
� Read only – make the gauge read only
� Additional classes – additional CSS classes for the element

93

Once the gauge parameters are defined, press Add to plan button and newly created object will
appear on the map. You can move the object to the location it will be located. Press on Save and

reload plan button so the objects starts functioning.

1.8.8. Camera

LogicMachine supports third party IP web camera integration into its visualization.

� Source url – source address of the video stream
� Window size – size of the window of camera picture
� Custom name – name for the object
� Icon – icon for the object
� Auto open window – automatically open video window, otherwise it is launched by

click on the icon
� Hide background– hide icon background
� Additional classes – additional CSS classes for the element

Note! If IP camera requires user name and password, enter the url in form
http://USER:PASSWORD@IP

Once the camera parameters are defined, press Add to plan button and newly created object will
appear in look of video camera. You can move the object to the location it will be located. Note
that while being in editing mode, the object will not work. Press on Save and reload plan button
so the objects starts functioning. By pressing on video camera, a new sub-window appears with a
picture from your IP web camera. The window can be freely moved to other location so not to
cover other visualization objects.

94

1.8.9. Graph

Real-time graphs can be integrated into visualization system to monitor the current and old value
of scale-type objects. Make sure logging is enabled for the object in Object tab which values is
planned to be shown in the graph.

� Data object – group address of the object
� Custom name – name of the object
� Icon– icon to launch the graph
� Windows size – size of the graph window
� Number of points – number of data points to show in the graph

95

� Auto open window – graph window is automatically opened
� Hide background – hide icon background
� Additional classes – additional CSS classes for the element

Once the graph parameters are defined, press Add to plan button and newly created object will
appear. You can move the object to the location it will be located. Note that while being in
editing mode, the object will not work. Press on Save and reload plan button so the objects starts
functioning.

96

1.9. Vis.graphics

 The list of predefined icons, list of images and backgrounds is available in Vis.graphics tab.

Press on Add icons button to add a new entry. The system accepts any size icons. GIF is also
supported.

Name (optional) – the name of the icon
File – Icon file location

Images/Backgrounds tab is used to upload image files for visualization purposes

97

In Fonts tab you can add custom fonts

In Custom CSS tab you can add your CSS style for the visualization which you can use when
adding elements into visualization, so any elements of Look and Feel is customizable with this
solution.

98

1.10. Utilities

There are following utilities in the tab available:

Import ESF file– imports ETS object file. It will be necessary to set correct data types for
some imported objects. Existing objects will not be overwritten. Objects with the same
name are considered duplicates and might not be imported

Import neighbours – import list of objects from network LM devices

Reset / clean-up – delete all objects from the Logic Machine, they disappear from
visualization aswell

99

Factory reset– delete all configuration and return to factory defaults

Date and time – data and time settings

Install updates – install LogicMachine update file *.lmu. LogicMachine will reboot after
successful update

Backup – backup all objects, logs, scripts, visualization.

Restore– restore configuration from backup

100

General Configuration – system general settings

Interface language – interface language
List items per page –count of lines per page e.g. Objects, Object logs, Alerts etc.

Automatic address range start – start group address when using automatic
addressing in scripts, IO settings and other
Discover new objects– either KNX object sniffer is enabled. If yes, once triggered
all new objects will appear automatically in the Objects list
Object log size – max count of object logs
Default log policy– either to log status change for all objects or only for checked
objects
Alert log size – max count of alerts logged
Log size – max count of logs

Error log size – max count of errors logged
Enable block editor – either to enable scripting block editor
Code editor tab size – specify tab size to be used in the scripting editor

Note! If log size is changed to a smaller value, excess logs will be deleted on next auto clean-up
(every 10 minutes)

Note! Log policy only affects new objects, current per-object log settings are kept unchanged

Warning! Excessive object logging degrades LogicMachine performance

101

Vis. Configuration – visualization specific settings

Usermode sidebar [Show docked, Show as overlay (auto-hide), Hide (fullscreen
mode] – visibility of sidebar when in Usermode Visualization
Usermode view [Align plans to top left, no size limit; Center plans, limit size;
Center plans, enable auto-sizing; Center horizontally, auto-size width] – defines
the look of Usermode visualization
Usermode page transition [Flip X; Flip Y; Shrink; Expand; Slide up; Slide

down, Slide left; Slide right; Slide up big; Slide down big; Slide left big; Slide
right big] – transition when changing plans in visualization
Usermode auto-size upscaling – enable this to scale the visualization
automatically on each display device. Please note to use SVG format images and
icons so the quality is not affected by upscaling
Usermode background color – background color in usermode visualization
Usermode background image – specific image for usermode visualization
Custom font – select custom font to use in visualization
Use dark theme – check to enable dark theme in both usermode and touch
visualizations
Visualization pin code – PIN code to access visualization
Enable swipe gesture – check to enable swipe gesture to move across plans from
your touch device
Dim inactive visualization after – define time in minutes after which the screen
will be dimmed where visualization is opened
Dim level – dim level for the display

102

Show alerts in Usermode – once new Alerts is triggered it will pop-up in User
mode visualization

System – by clicking on the arrow near System button, KNX Connection, User Access, Remote

Services settings can be access. By clicking on the System button,
network configuration window opens in new browser’s tab.

1.11. Alerts

In Alert tab a list of alert messages defined with alert function in scripts is located. The messages
are stored on the compact flash. Information on system start and KNX connection status
messages are also automatically displayed in this window.

103

On the communication panel you can jump by pages
and reload the page.

Example

1. temperature = 25.3

2.

3. if temperature > 24 then

4. -- resulting message: 'Temperature levels are too high: 25.3'

5. alert('Temperature level is too high: %.1f', temperature)

6. end

1.12. Error log

Error messages from scripts are displayed in Error log tab.

1.13. Logs

Logs can be used for scripting code debugging. The log messages appear defined by log
function.

104

1.14. Help

Documentation for scripting syntaxes is displayed in Help tab.

105

2. User mode visualization

User mode visualization contains created visualization maps.

There are three access levels: read, write, admin (password access can be also disabled)

Access level Login Password

Read-only Visview visview

Write viscontrol viscontrol

Write+admin level visadmin visadmin

106

2.1. Custom design Usermode visualization

Through Custom CSS styles it is possible to create different type of visualization maps.

3. Touch visualization

Touch visualization is designed for iPhone/iPod/iPad/Android touch screen devices. All objects
which are added in Logic Machine configuration by default are visible in touch visualization (if
there is no Hide in touch option enabled).

There are three access levels: read, write, admin

Access level Login Password

Read-only visview visview

Write viscontrol viscontrol

Write+admin level visadmin visadmin

107

The main window is Building view where you can choose which Floor from which Building to
control. Once you choose the floor, all objects which are assigned to it, are listed and can be
controlled.

Launching visualization on touch device (iPad in this case)

• Make sure your iPad is connected wirelessly to the LogicMachine (either through
separate access point or directly to Logic Machine’s USB WiFi adapter).

• In the browser enter Logic Machine’s IP (default 192.168.0.10).

• Click on the Touch Visualization icon.

• Save the application as permanent/shortcut in your iPad

108

4. System configuration

System configuration allows managing router functionality on KNX/EIB LogicMachine as well
as do access control management, upgrade firmware, see network and system status and others.

Login Password

admin admin

4.1. Changing password

The login and password configuration window is located in System � User access.

109

Access control is separated in 3 tabs:

Admin/Remote – access parameters for Logic Machine, Network Configuration, RSS

and XML

Visualization – access parameters for Touch and User mode visualization

4.2. Packages

System � Packages shows the packages installed in the system. You can add new packaged by
pressing on +

110

4.3. Upgrade firmware

System � Upgrade firmware is used to do a full upgrade of the system (both OS part as well as
LogicMachine part).

4.4. Reboot Logic Machine

You can restart the LogicMachine by executing System �Reboot command.

4.5. Shutdown Logic Machine

You can shutdown the LogicMachine by executing System �Shutdown command. It is advisable
to shutdown the system before plug out the power, because the database is saved safely.

111

4.6. Interface configuration

Ethernet interface is listed in the first tab. There are possibilities to disable/enable or to take a
look at the traffic flow graph using special icons on the right side.

By clicking on the interface you get to the configuration.

� Protocol– specific protocol used for addressing
 Static IP – static IP address. By default 192.168.0.10

 DHCP – use DHCP protocol to get IP configuration.

112

 Current IP– the IP address got from DHCP server. This field appears only if the
IP address is given otherwise it’s hidden.

� Network mask – network mask. By default 255.255.255.0 (/24)
� Gateway IP – gateway IP address
� DNS server – DNS server IP address
� MTU– maximum transmission unit, the largest size of the packet which could be passed

in the communication protocol. By default 1500

4.6.1. Ethernet interface data throughput graph

On the main window of the Ethernets tab, if you click on the button, a new window is
opened. It draws a real-time graph of the traffic flow passing the interface (both In and Out).
There is a possibility to switch the units of measurement – bytes/s or bytes/s.

113

4.7. Routing Table

System routing table is located in Network�Routes menu. The window is divided in two parts –
Static routes and Dynamic routes.

4.7.1. Dynamic routes

� Interface – interface name
� Destination– destination IP address
� Network mask – network mask

� Gateway – gateway IP address

4.7.2. Static routes

114

� Interface – interface name
� Destination– destination IP address
� Network mask – network mask

� Gateway – gateway IP address

4.8. ARP table

Address Resolution Protocol table is listed in Network � ARP table.

4.9. FTP server

You can enable access to FTP server of LogicMachine by enabling this service in Service �FTP

Server.

� Server status – secure tunnel mode
� Port – port of the service
� Username – login name, ftp

� Password – password, length 4-20 symbols

115

4.10. System monitoring

System monitoring is used to monitor system processes, hardware. In case of failure, the system
will be rebooted or specific task restarted.

4.11. NTP client

NTP servers can be specified in Service � NTP client window.

116

4.12. System status

General system status with CPU usage, Memory usage, Partition information can be seen in
Status �System status window.

4.13. Network status

Network overview of IP setting and transferred data can be seen in Status �Network status
window.

117

4.14. Network utilities

Ping and Traceroute utilities are located in Status �Network utilities window. Both IP address
and DNS names are accepted.

4.15. System log

Operating system log is available in Status � System log.

118

4.16. Running processes

System running processes can be seen in Status �Running processes window.

119

5. User mode schedulers

User mode schedulers contains user-friendly interface for end-user to manage scheduler tasks,
for example, specify thermostat values depending of the day of the week, time and holidays.

5.1. Events

Each scheduler is mapped to specific group address in administration panel (see section 1.4 of

this manual).

When adding the new task for specific scheduler you can specify day of the week, start time,
value to send to the object.

120

5.2. Holidays

In Holidays special days are specified which are then used adding new events.

Click on Add new holiday button to specify a holiday.

121

6. Trend logs

Trend logs are end user interface for trends (defined in administrator interface in section 1.5).

By clicking on the hidden blue menu you can change to different trends where each is mapped to
a specific KNX group address.

Current – Current trend is drawn in blue, you can choose either to show Day, Month or
Year view
Previous – previous time period, you can choose either to show Day, Month or Year view
Toggle previous – when enabled a yellow trend line appears showing Previous trend
above Current trend
Home – LogicMachine home screen.

122

Data points can be shown also in a way of table which can be later exported as CSV file.

123

7. Modbus RTU/TCP interconnection with LM

Modbus RTU is supported over RS485 interface. Modbus TCP is supported over Ethernet port.
Modbus communication is done either from visual Modbus mapper for Modbus Master or
through scripts for Modbus Slave.

Modbus Master – user graphical mapper interface in Modbus tab
Modbus Slave – to use LM as Modbus Slave, disable Modbus RTU in Modbus�RTU settings,
and use scripts for the communication

7.1. Modbus device profile

First thing you should do is to define Modbus device profile – it is a *.json file with the
following structure e.g. a fragment from UIO20 device by Embedded Systems:

{
"manufacturer": "Embedded Systems",
"description": "Universal 16+4 I/O module",
"mapping": [
{ "name": "Output 1", "bus_datatype": "bool", "type": "coil", "address": 0, "writable": 1 },
{ "name": "Input 1", "bus_datatype": "float16", "type": "inputregister", "address": 0,
"value_multiplier": 0.001, "units": "V" }
]
}

Name – Object name, e.g. Output 2 (String, Required)
Bus_datatype - KNX object data type, key from dt table, e.g. float32 (String/Number,

Required)

Type – Modbus register type, possible values: coil discreteinput register inputregister
(String, Required)
Address – Register address (0-based) (Number, Required)
Writable - Set to true to enable writing to register if type is either coil or discreteinput
(Boolean)
Datatype – Modbus value data type. If set, conversion will be done automatically.
Possible values: uint16 int16 float16 uint32 int32 float32 uint64 int64 quad10k s10k
(String)

124

Value_delta – New value is sent when the difference between previously sent value and
current value is larger than delta. Defaults to 0 (send after each read) (Number)
Value_multiplier – Multiply resulting value by the specified number, value = value_base
+ value * value_multiplier (Number)
Value_bitmask – Bit mask to apply, shifting is done automatically based on least
significant 1 found in the mask (Number)
Value_nan – Array of 16-bit integers. If specified and read operation returns the same
array no further processing of value is done (Array)
Value_conv – Apply one of built-in conversion functions (String, Internal)
Value_custom – Name of a built-in enumeration or a list of key -> value mapping,
resulting value will be 0 if key is not found (String/Object)
Internal – Not visible to user when set to true, should be used for scale registers
(Boolean)
Units – KNX object units/suffix (String)
Address_scale – Address of register containing value scale, value = value * 10 ^ scale
(Number)
Read_count – Number of register to read at once (for devices that only support reading of
a specific block of registers) (Number)
Read_swap – Swap register order during conversion (endianness) (Boolean)
Read_offset – Position of first register of data from the block of registers (0-based)
(Number)

When the Modbus device profile file is created, upload it by clicking on Profiles button.

7.2. Modbus RTU settings

If the communication is over Modbus RTU protocol (over RS-485 serial port), you
should do base serial port settings by clicking on RTU settings button.

125

RTU (serial) enabled – define either RTU is enabled or not
Port – port name. In case of several RS-485 ports on the device, the name of the port is
incremented by one, e.g. RS485-1, RS485-2, RS485-3 etc.
Baud rate – baud rate for the connection
Parity – parity for the connection
Duplex – specify either it is half or full duplex
Reset to defaults – reset RTU settings to defaults

7.3. Adding Modbus device

Once profiles are defined and RTU settings set, add Modbus device by clicking Add device
button.

Connection type – define either it is Modbus RTU or Modbus TCP connection
Name – name of the device
Profile – profile of the device
Device address – device address
Poll interval (seconds) – interval to poll the device
IP – IP address of the device in case Modbus TCP is used

126

Port – Communication port of the device in case Modbus TCP is used

Once the device is added, you can do mapping to KNX addresses by clicking on icon. First,
you see a list of all objects on the Modbus device.

Click on specific object to do mapping.

7.4. Program address for UIO20 Modbus device

127

There is a separate Write address button to program address for UIO20 device. Press
programming button and click save afterwards. Programming LED will turn off after successful
write operation.

Once script is added, you can add the code in the Script Editor. There are lots of predefined code
blocks in the Helpers.

7.5. Modbus Slave examples

Add the following code to Common functions

1. -- modbus proxy

2. mbproxy ={

3. -- supported function list

4. functions ={

5. 'readdo',

6. 'readcoils',

7. 'readdi',

8. 'readdiscreteinputs',

9. 'readao',

10. 'readregisters',

11. 'readai',

12. 'readinputregisters',

13. 'writebits',

14. 'writemultiplebits',

15. 'writeregisters',

16. 'writemultipleregisters',

17. 'reportslaveid',

18. 'getcoils',

19. 'getdiscreteinputs',

20. 'getinputregisters',

21. 'getregisters',

22. 'setcoils',

23. 'setdiscreteinputs',

24. 'setinputregisters',

25. 'setregisters',

26. },

27. -- new connecton init

28. new =function()

29. require('rpc')

30. local mb =setmetatable({}, { __index = mbproxy })

31.

32. mb.slaveid =0

33. mb.rpc = rpc.client('127.0.0.1', 28002, 'mbproxy')

34.

35. for _, fn inipairs(mbproxy.functions)do

36. mb[fn]=function(self, ...)

37. return mb:request(fn, ...)

128

38. end

39. end

40.

41. return mb

42. end

43. }

44.

45. -- set local slave id

46. function mbproxy:setslave(slaveid)

47. self.slaveid = slaveid

48. end

49.

50. -- send rpc request for a spefic function

51. function mbproxy:request(fn, ...)

52. local res, err = self.rpc:request({

53. fn = fn,

54. params ={ ... },

55. slaveid = self.slaveid or0,

56. })

57.

58. -- request error

59. if err then

60. returnnil, err

61. -- request ok

62. else

63. -- reply with an error

64. if res[1]==nilthen

65. returnnil, res[2]

66. -- normal reply

67. else

68. returnunpack(res)

69. end

70. end

71. end

Handler (resident script with 0 delay) configuration

1. mb:open('/dev/RS485', 38400, 'E', 8, 1, 'H')
set baudrate and other serial port parameters

2. mb:setslave(10)
set slave device id

3. mb:setmapping(10, 10, 10, 10)

set number coils, discrete inputs, holding registers and input registers

4.mb:setwritecoilcb(function(coil, value)...

callback function which is executed for each coil write

129

5. mb:setwriteregistercb(function(coil, value)...
callback function which is executed for each register write

Handler script example

1. -- modbus init

2. ifnot mb then

3. require('luamodbus')

4. mb = luamodbus.rtu()

5. mb:open('/dev/ttyS2', 38400, 'E', 8, 1, 'H')

6. mb:connect()

7.

8. -- slave id

9. mb:setslave(10)

10.

11. -- init slave storage for coils, discrete inputs, holding registers and input registers

12. mb:setmapping(10, 10, 10, 10)

13.

14. -- coil write callback

15. mb:setwritecoilcb(function(coil, value)

16. if coil == 0 then

17. grp.write('1/1/1', value, dt.bool)

18. else

19. alert('coil: %d = %s', coil, tostring(value))

20. end

21. end)

22.

23. -- register write callback

24. mb:setwriteregistercb(function(register, value)

25. if register == 0 then

26. -- send value limited to 0..100

27. grp.write('4/1/5', math.min(100, value), dt.scale)

28. else

29. alert('register: %d = %d', register, value)

30. end

31. end)

32. end

33.

34. -- server part init

35. ifnot server then

36. require('rpc')

37.

38. -- incoming data handler

39. local handler =function(request)

40. local fn, res

41.

42. fn =tostring(request.fn)

130

43.

44. ifnot mb[fn]then

45. return{nil, 'unknown function ' .. fn }

46. end

47.

48. iftype(request.params)=='table'then

49. table.insert(request.params, 1, mb)

50. res ={ mb[fn](unpack(request.params))}

51. else

52. res ={ mb[fn](mb)}

53. end

54.

55. return res

56. end

57.

58. server = rpc.server('127.0.0.1', 28002, 'mbproxy', handler, 0.01)

59. end

60.

61. mb:handleslave()

62. server:step()

Example: event script which changes modbus slave coil (address 0)

Must be mapped to a group address with binary value.

1. value = event.getvalue()

2. mb = mbproxy.new()

3. mb:setcoils(0, value)

Example: event script which changes modbus slave register (address 5)

Must be mapped to a group address with scaling (0..100) value

1. value = event.getvalue()

2. mb = mbproxy.new()

3. mb:setregisters(5, value)

131

6. BACnet IP interconnection with LM4

6.1. BACnet server mode: transparent data transfer to BACnet network

BACnet server specific configuration can be done in System Configuration ���� Network

����BACnet Settings.

Server enabled – specify if BACnet server is enabled or not
Device ID – device ID in BACnet network
Password – device password
Object priority – object priority
Port – port number
BBMD IP – BACnet router IP. When router IP and port are set, LM will act as a foreign
device and will attempt to register with BACnet router.
BBMD port – BACnet router port. When router IP and port are set, LM will act as a foreign
device and will attempt to register with BACnett router
BBMD lease time (seconds) – registration resend interval

To make KNX/EIB objects BACnet readable/writable, mark necessary objects in LogicMachine
as “Export object”. Binary objects will appear as Binary Values, other numeric values will
appear as Analog Values. Other types are not currently supported. KNX bus write changes
priority array value at configured object priority index

132

In System Configuration ���� Network ����BACnet objects you can see marked objects on
LogicMachine which are sent to BACnet network.

6.2. BACnet client mode

Normally this mode is used to interconnect LogicMachine, for example, with VRV systems over
BACnet IP protocol. The settings are available in BACnet tab.

133

By clicking on Scan Network button you can see a list of BACnet server devices on the network.
With Scan Selected you can rescan specific BACnet server for respective objects.

Mapping to KNX objects currently is done over scripting.

Before using any BACnet function, you must include the library:
 require('bacnet')

Read current value of binary or analog object:
 bacnet.readvalue(device_id, object_type, object_id)

Read binary object:
 value = bacnet.readvalue(127001, 'binary value', 2305)

Read analog object:
 value = bacnet.readvalue(127001, 'analog value', 2306)

Write new value to binary or analog object priority array:
 bacnet.write = function(device_id, object_type, object_id, value, priority)
 Value can be nil, boolean, number or a numeric string
 Priority parameter is optional, lowest priority is used by default

Set binary object value:
 bacnet.write(127001, 'binary value', 2305, true)

Set analog object value:
 bacnet.write(127001, 'analog value', 2306, 22.5)

Set binary object value at priority 12:
 bacnet.write(127001, 'binary value', 2305, true, 12)

Set analog object value at priority 10:
 bacnet.write(127001, 'analog value', 2306, 22.5, 10)

Clear binary object value at priority 12:
 bacnet.write(127001, 'binary value', 2305, nil, 12)

134

7. 1-wire configuration

1-wire is a bus technology which is built based on client-server topology and allowing to connect
up to 300 devices to one controller. It is either 2-wire or 3-wire bus installation. In case of 2-wire
system, a parasitic powering is used directly from the bus, normally up to 20 devices can work in
this way. In case of bigger amount of 1-wire sensors, you can use LogicMachine 5V DC output
to power 1-wire devices.

Advantages of 1-wire over KNX:

• No need in ETS

• Very cost-effective

• You can use the same wiring as KNX does and connect all standard sensors

Advantages of 1-wire over resistive sensors:

• Substantial savings on equipment

• Easier connection diagram allows to reduce the complexity of laying wiring

• Extension possibility: connection of additional sensors without changing basic wiring

• Ability of remote monitoring of sensors (open circuit, short circuit etc.)

• No need to take into account the resistance of conductors like in the circuit with resistive
sensors

1-wire connection diagrams:

135

Once 1-wire sensors are connected to the 1-wire interface of LogicMachine4

Name – name of the 1wire device
Linked to object – mapped KNX object
Sensor status object – mapped KNX status object
Write to bus – define either to write telegram in KNX bus on read value
Send delta – define either to send delta of temperature sensor
Send timer (seconds) – define interval in which send the measurement
Value compensation – compensate value of the reading of temperature

136

8. DALI configuration

LogicMachine4 and Reactor V2 have DALI Master built-in. We recommends to connect no
more than 32 ballasts to one DALI line. If more ballasts are necessary to connect, you can use
external DALI-RS-485 interfaces and connect to RS-485 port.

• Scan gateways - scans for currently connected gateways, address mapping for missing
devices is deleted automatically

• Write ID - allows setting a unique address for each gateway

• Scan devices - scans for currently connected DALI devices to the selected gateway,
assigns short address automatically. You can also set not to overwrite existing addresses
during scan

• Port settings – serial port name if there are external DALI-RS-485 interfaces connected

For each DALI device, you can set a custom name and map to binary on/off and scale object.
This allows communication with DALI devices from KNX bus and visualization without any
additional scripts.

137

8.1. DALI object mapping

Once DALI objects are scanned, you can click on corresponding object and perform the
configuration.

Device name – name of the DALI device
Binary (ON/OFF) object – map to KNX binary object
Preset for binary ON – preset on binary ON
Scale (0-100%) object – map to KNX scale object

You can set up specific value by clicking on this icon

8.2. Access DALI bus from scripts

If you want to access DALI devices from other scripts, you can use dalicmd function.

dalicmd(gateway, command, parameters)

Parameters:
 gateway - gateway id (0..63)
 command - DALI command to execute
 parameters - Lua table:
 addrtype - address type, only required for addressable commands, possible values:
short group broadcast

 address - short or group address
 value - additional value to send

Example:

Use gateway with id 1, switch all ballasts off, set ballast with short address 5 to full on

require('user.dali')

dalicmd(1, 'arc', { addrtype = 'broadcast', value = 0 })

dalicmd(1, 'arc', { addrtype = 'short', address = 5, value = 254 })

138

DALI commands

In the list below please see description of parameters of function dalicmd.

Command – dalicmd() parameter command
Description – description of command
Addressable – + means that this is addressable command, dalicmd() requires existence of
parameter cmddats and addrtype_V’broadcast’. Empty field means that the command is
non-addressable and parameter cmddats may be unused
Value – interval of values of parameter value_V.

Command Description Addressable Reply Value

arc direct arc power control +

0..254

off turn off +

up turn on +

down down +

stepup step up +

stepdown step down +

recallmin recall max level +

recallmax recall min level +

stepdownoff step down and off +

stepupon on and step up +

gotoscene go to scene

0..15

reset reset +

storeactual store actual level in the dtr +

storemax store the dtr as max level +

storemin store the dtr as min level +

storesystemfailure store the dtr as system failure level +

storepoweron store the dtr as power on level +

storefadetime store the dtr as fade time +

storefaderate store the dtr as fade rate +

storescene store the dtr as scene +

0..15

removescene remove from scene +

0..15

addtogroup add to group +

0..15

removefromgroup remove from group +

0..15

storeshortaddress store dtr as short address +

querystatus query status + +

queryballast query ballast + +

querylampfailure query lamp failure + +

querylamppoweron query lamp power on + +

querylimiterror query limit error + +

queryresetstate query reset state + +

querymissingshort query missing short address + +

139

queryversion query version number + +

querydtr query content dtr + +

querydevicetype query device type + +

queryphysicalmin query physical minimum level + +

querypowerfailure query power failure + +

queryactual query actual level + +

querymax query max level + +

querymin query min level + +

querypoweron query power on level + +

querysystemfailure query system failure level + +

queryfadetimerate query fade time / fade rate + +

queryscene query scene level (scenes 0-15) + + 0..15

querygroupslow query groups 0-7 + +

querygroupshigh query groups 8-15 + +

queryrandomaddrh query random address (h) + +

queryrandomaddrm query random address (m) + +

queryrandomaddrl query random address (l) + +

terminate terminate

setdtr set data transfer register (dtr)

0..255

initialise initialise

randomise randomise

compare compare

+

withdraw withdraw

searchaddrh set search address (h)

0..255

searchaddrm set search address (m)

0..255

searchaddrl set search address (l)

0..255

programshortaddr program short address

0..63

verifyshortaddr verify short address

+ 0..63

queryshortaddr query short address

+

physicalselection physical selection

enabledevicetype enable device type x

0..255

140

9. EnOcean interconnection with LogicMachine

Logic Machine3 Reactor and Reactor V2 have EnOcean transceiver built-in with no limitation
on supported count of devices. You need to use external USB gateway for LogicMachine4 to
activate this functionality.

9.1. EnOcean interfaces

EnOcean interface Base address can be found in Enocean�Interfaces tab.

9.2. EnOcean to KNX mapping

All telegrams received from EnOcean devices appears in Enocean�KNX section.

Once some specific device has to be mapped to KNX, the corresponding row has to be clicked
and profile has to be chosen. There are all main profiles predefined in the list.

Once the device profile is set, you can map functionality of the specific device to KNX group
addresses by clicking on Mapping icon.

141

When EnOcean gateway received telegram from specific device, the respective row gets light
green.

Respective KNX group addresses get updated with the new values.

142

9.3. KNX to EnOcean mapping

You should click on Add new device button to add EnOcean device which will be communicated
from specific KNX object.

Once the device is added, you should pair it with specific device in EnOcean network, press
Tech-in button.

Note! EnOcean device should be set in learning mode in order to pair it successfully.

Further this device can be mapped with specific KNX addresses.
When KNX object value will be updated, the telegram will be sent to respective EnOcean
device.

143

144

145

10. CEC/HDMI integration with LM4

Consumer Electronics Control (CEC) is an HDMI feature designed to allow the user to
command and control up-to 15 CEC-enabled devices, that are connected through HDMI, by
using only one of their remote controls (for example by controlling a television set, set-top box,
and DVD player using only the remote control of the TV. In comparison with InfraRed, it is
possible, for example, to switch off/on the power of TV.

As HDMI has limited cable length, we have developed additional CEC/HDMI adapter which is
located near the CEC-compatible control device like TV and wire is put to LogicMachine4 (not
limited in length). CEC adapter is available by request when purchasing LM4.

The most easiest and quickest way to check if your device is CEC compatible is to use Google
Chromecast device.

10.1. CEC function

Add the following function in Scripting –> Common Functions

1. cec = {}

2.

3. cec.init = function()

4. if not cec.port then

5. require('serial')

6. cec.port = serial.open('/dev/ttyAPP0')

7. cec.port:flush()

8. end

9. end

10.

11. cec.send = function(data)

12. local cmd, res

13.

14. if type(data) ~= 'string' then

15. return nil, 'invalid data'

16. elseif #data < 2 then

17. return nil, 'data too short'

18. elseif #data > 30 then

19. return nil, 'data too long'

20. end

21.

22. cec.init()

23.

24. cmd = string.char(0x00, 0xA0, #data) .. data

25. cec.port:write(cmd)

26.

27. res = cec.port:read(2, 0.2)

28. if type(res) == 'string' and #res == 2 and res:byte(1) == 0x5A then

29. if res:byte(2) == 0x10 then

30. return true

146

31. elseif res:byte(2) == 0x40 then

32. return nil, 'transmitter busy'

33. end

34. end

35.

36. return nil, 'reply error'

37. end

38.

39. cec.poll = function()

40. local cmd, len, frame, count

41.

42. cec.init()

43.

44. cmd = string.char(0x00, 0xA0, 0x01, 0xAA)

45. cec.port:write(cmd)

46.

47. res = cec.port:read(2, 0.2)

48. if type(res) == 'string' and #res == 2 and res:byte(1) == 0xA5 then

49. len = res:byte(2)

50.

51. if len == 0 then

52. return false, 0

53. end

54.

55. res = cec.port:read(len, 0.2)

56.

57. if type(res) == 'string' and #res == len then

58. count = res:byte(1) - 1

59. return res:sub(2), count

60. end

61. end

62.

63. return nil, 'reply error'

64. end

147

10.2. CEC command generator

CEC command generator is available here: http://www.cec-o-matic.com/
As Source choose TV. The ID which you get, use in as shown in the example below in form
0xID_nr.

10.3. Common commands

Send stand-by to all devices

cmd = string.char(0xBF, 0x36)

cec.send(cmd)

Returns single telegram from buffer and count of telegrams stored (up to 16). Returns false, 0 if
buffer is empty

cec.poll()

148

11. DMX interconnection with LM4

DMX protocol support is realized upon RS485 serial port.

Usage

d =DMX:init(parameters)

d:run()

Parameters

• channels – (optional, defaults to 3) number of DMX channels to use

• resolution – (optional, defaults to 20) number of DMX updates per second. Larger
value gives smoother transitions, but increases CPU usage

• transition – (optional, defaults to 2) soft transition time in seconds

• port– (optional) RS-485 port name, usually you don’t have to change this value

Common function

The following program has to be added in Common functions library.

DMX = {
 -- default params

defaults = {
 -- storage key

skey = 'dmx_chan_',
 -- RS-485 port

port = '/dev/ttyS2',
 -- number of calls per second

resolution = 20,
 -- total number of channels to use

channels = 3,

 -- transition time in seconds, does not include DMX transfer time

transition = 2,

 },

 -- value setter

set = function(i, v)

 -- validate channel number

if type(i) == 'number' and i >= 1 and i <= 512 then

 -- validate channel value

if type(v) == 'number' and v >= 0 and v <= 255 then

storage.set(DMX.defaults.skey .. i, v)

end

end
end

}

-- DMX init, returns new DMX object

function DMX:init(params)

require('luadmx')

local n = setmetatable({}, { __index = DMX })

local k, v

 -- set user parameters
 n.params = params

 -- copy parameters that are set by user

for k, v in pairs(DMX.defaults) do
if n.params[k] == nil then

 n.params[k] = v
end

end

n:reset()

return n

end

function DMX:reset()

local err, chan

 self.dm, err = luadmx.open(self.params.port)

 -- error while opening

if err then

os.sleep(1)

error(err)

end

149

 -- set channel count

 self.dm:setcount(self.params.channels)

 -- number of transaction ticks

 self.ticks = math.max(1, self.params.transition * self.params.resolution)

 -- calculate sleep time
 self.sleep = 1 / self.params.resolution

 -- reset channel map

 self.channels = {}

 -- fill channel map

for chan = 1, self.params.channels do

self.channels[chan] = { current = 0, target = 0, ticks = 0 }

 -- turn off by default

storage.set(self.params.skey .. chan, 0)

 self.dm:setchannel(chan, 0)

end

end

-- get new values

function DMX:getvalues()

local chan, val

 -- check for new values for each channel
for chan = 1, self.params.channels do

val = storage.get(self.params.skey .. chan)

 -- target value differs, set transcation
if val ~= self.channels[chan].target then

self.channels[chan].target = val
self.channels[chan].delta = (self.channels[chan].target - self.channels[chan].current) / self.ticks

self.channels[chan].ticks = self.ticks

end

end

end

-- main loop handler
function DMX:run()

local i, bs, bm, as, am, delta
local res = self.params.resolution

if not self.calibrated then

bs, bm = os.microtime()

end

self:getvalues()

 -- transition loop

for i = 1, res do

self:step()

 self.dm:send()

 -- wait until next step

os.sleep(self.sleep)

end

 -- calibrate delay loop to match 1 second
if not self.calibrated then

as, am = os.microtime()
delta = (as - bs) + (am - bm) / 1000000

if delta > 1.05 then

 self.sleep = self.sleep - math.max(10, self.sleep / res)
else

 self.calibrated = true

end

end

end

-- single transition step

function DMX:step()

local chan, t

 -- transition for each channel

for chan = 1, self.params.channels do

 t = self.channels[chan].ticks

 -- transition is active

if t > 0 then

 t = t - 1

self.channels[chan].current = self.channels[chan].target - self.channels[chan].delta * t

self.channels[chan].ticks = t

 self.dm:setchannel(chan, self.channels[chan].current)

end

end

end

DMX handler programs

DMX handler should be placed inside a resident script. Sleep time interval must be set to 0.

150

Once the resident script is added we can add the program source in Script Editor

1. ifnot d then

2. d =DMX:init({

3. channels = 3,

4. transition = 2,

5. })

6. end

7.

8. d:run()

Setter (used in other scripts)

DMX.set(channel, value)

• channel– DMX channel number [1..512]

• value – DMX channel value [0..255]

11.1. Examples

Predefined scene example: The following example should be placed inside a resident script.
Sleep time defines scene keep time (at least 1 second).

1. ifnot scenes then

151

2. -- 3 channel scene

3. scenes ={

4. { 255, 0, 0 },

5. { 0, 255, 0 },

6. { 0, 0, 255 },

7. { 255, 255, 0 },

8. { 0, 255, 255 },

9. { 255, 0, 255 },

10. { 255, 255, 255 },

11. }

12.

13. current = 1

14. end

15.

16. -- set current scene values

17. scene = scenes[current]

18. fori, v inipairs(scene)do

19. DMX.set(i, v)

20. end

21.

22. -- switch to next scene

23. current = current + 1

24. if current > #scenes then

25. current = 1

26. end

Random scene example: The following example should be placed inside a resident script. Sleep
time defines scene keep time (at least 1 second).

1. -- number of steps to use, e.g. 3 steps = { 0, 127, 255 }

2. steps =5

3. -- number of channels to set

4. channels =3

5. -- first channel number

6. offset = 1

7.

8. fori= offset, channels do

9. v =math.random(0, (steps - 1))* 255 /(steps - 1)

10. DMX.set(i, math.floor(v))

11. end

152

12. 3G modem connection with LM4

LogicMachine4 has standard 3G modem driver built-in (Huawei and other vendor support).
Currently this can be used for SMS notifications only – receiving and sending commands. The
modem has to be plugged into any of USB ports of LM4 and it starts operating immediately. We
suggest to use external 5V powering for the modem because by USB2.0 standard the output
current on USB is 0.75A, but some modems requires up to 2A which is out of standard so the
modem can lack the power and get disconnected.

First thing is to lower the modem speed by adding the following code in Start-up / Init script:

1. os.execute('echo 1 >

/sys/bus/platform/devices/ci_hdrc.0/force_full_speed')

2. os.execute('echo 1 >

/sys/bus/platform/devices/ci_hdrc.1/force_full_speed')

3. os.execute('usbreset /dev/bus/usb/001/001')

After you need to add SMS handler program – a resident script with sleep interval 0.

Note! Change white list telephone numbers and SIM card’s PIN code in the below script.

1. -- init

2. ifnot modem then

3. -- allowed numbers, SMS message from other number will be ignored

4. numbers ={'1234567890', '0123456789'}

5. -- replace 0000 with SIM pin number, or remove the line below if PIN check is disabled

6. pincode='0000'

7. -- modem communication port, ttyUSB2 for Huawei E173

8. comport ='ttyUSB2'

9. -- open serial port

10. modem =AT:init('/dev/' .. comport)

11. -- command parser

12. parser =function(cmd, sender)

13. local find, pos, name, mode, offset, value, jvalue, obj

14. cmd=cmd:trim()

15. mode =cmd:sub(1, 1):upper()

16. if mode =='W'or mode =='R'then

17. cmd=cmd:sub(3):trim()

18. -- parse object name/address

19. find =cmd:sub(1, 1)=='"'and'"'or' '

20. offset = find =='"'and 1 or0

21. -- pad with space when in read mode

22. if mode =='R'and find ==' 'then

23. cmd=cmd .. ' '

24. end

25. -- find name

26. pos=cmd:find(find, 1 + offset, true)

27. -- name end not found, stop

28. ifnotposthen

29. returnfalse

153

30. end

31. -- get name part

32. name =cmd:sub(1 + offset, pos - offset):trim()

33. if mode =='W'then

34. value =cmd:sub(pos + offset):trim()

35. ifnot value then

36. returnfalse

37. end

38. -- try decoding value

39. jvalue=json.pdecode(value)

40. value =jvalue ~=nilandjvalueor value

41. -- send to bus

42. grp.write(name, value)

43. -- read request

44. else

45. obj=grp.find(name)

46. -- send read request and wait for update

47. ifobjthen

48. obj:read()

49. os.sleep(1)

50. -- read new value

51. value =grp.getvalue(name)

52. -- got value, send response

53. if value ~=nilthen

54. jvalue=json.pencode(value)

55. if obj.name then

56. name =string.format('%s (%s)', obj.name, obj.address)

57. end

58. cmd=string.format('Value of %s is %s', name, jvalue)

59. modem:sendsms(sender, cmd)

60. end

61. end

62. end

63. end

64. end

65. -- incoming sms handler

66. handler =function(sms)

67. alert('incoming sms from %s (%s)', sms.sender, sms.data)

68. -- sms from known number, call parser

69. iftable.contains(numbers, sms.sender)then

70. parser(sms.data, sms.sender)

71. end

72. end

73. -- set sms handler

74. modem:setsmshandler(handler)

75. -- send pin if set

76. ifpincodethen

77. modem:send('AT+CPIN=' .. pincode)

78. end

79. -- set to pdu mode

154

80. modem:send('AT+CMGF=0')

81. -- enable sms notifications

82. modem:send('AT+CNMI=1,1,0,0,0')

83. alert('SMS handler started')

84. end

85. modem:run()

Command syntax:
 a. Write to bus:
 W ALIAS VALUE
 b. Read from bus:
 R ALIAS

On read request, script will reply with SMS message containing current value of selected object.

ALIAS can be:
 a. Group address (e.g. 1/1/1)
 b. Name (e.g. Obj1). If name contains spaces then it must be escaped usign double quotes (e.g.
"Room Temperature")

NOTE:
 a. Object data type and name must be set in Objects tab. Otherwise script won't be able to read
and write to object.
 b. Only ASCII symbols are accepted in the message.

12.1. Examples

Binary write (send the following SMS to switch kitchen lights on):

W 1/1/1 true

Scaling write (send the following SMS to set value 67% for red LED):

W LED1Red 67

Temperature (floating point) write (send the following SMS to make setpoint in the living room to 22.5 degrees):

W “Room Setpoint” 22.5

Read (send the following SMS to read the security panel value:

R 2/1/1

155

12.2. Send SMS messages to specific SIM numbers after group-read or

group-write is triggered

Task: Assume we have an Event-based script which triggers a program once group-read or
group-write is triggered for address 1/1/1. We want to send SMS to numbers 23335555 and
23335556 with 1/1/1 actual status.

1. require('socket')

2.

3. client =socket.udp()

4.

5. -- in the message field the number where SMS has to be send should be specified at the

beginning

6. localmsg='23335555 1/1/1 changes its value to: ' .. tonumber(event.datahex)

7. client:sendto(msg, '127.0.0.1', 12535)

8.

9. msg='23335556 1/1/1 changes its value to: ' .. tonumber(event.datahex)

10. client:sendto(msg, '127.0.0.1', 12535)

12.3. Send SMS messages without 3G modem

How to send event SMS to mobile phone from LogicMachine through Twilio service, without
external 3G adapter?

You can use Twilio service which offers free of charge SMS in the test period and messaging at
$0.01 for regular usage. The only disadvantage is it will use your standard Internet connection to
send messages to Twilio servers (not via GSM as with 3G adapters).

Twilio account

You can get ID and Token needed for the below example by registering on Twilio. Make sure
you enter a verified SIM number list / recipients in your account. Or please contact us for ready
example with our account data.

Function

Add the following function in Scripting –> Common functions

1. function sms(id, token, from, to, body)

2. local escape = require('socket.url').escape

3. local request = require('ssl.https').request

4. local url = string.format('https://%s:%s@api.twilio.com/2010-04-

01/Accounts/%s/Messages.json', id, token, id)

5. local body = string.format('From=%s&To=%s&Body=%s', escape(from),

escape(to), escape(body))

6.

156

7. return request(url, body)

8. end

Event-based script

Add event-based program for specific object, like 1/1/2 in this example

1. value = event.getvalue()

2.

3. from_nr = '+37112345679' -- put sender SIM nr here

4. to_nr = '+37112345678' -- put recepient SIM nr here

5. id_nr = 'ACe56f5' -- put your ID here

6. token_nr = '598c6ff' -- put your token here

7.

8. sms(id_nr, token_nr, from_nr, to_nr, 'The value for 1/1/2 has changed

to'..tostring(value))

157

12.4.

13. HDL protocol integration in LogicMachine4

Note! Please contact Embedded Systems team to receive a special package to integrate HDL
support into your LM4. Once you have the file, add it in Network configuration -> System ->

Packages.

13.1. HDL function

Add HDL script in Scripting -> Tools -> User function library

1. HDL ={

2. -- destination ip

3. dstip='192.168.1.7',

4. -- packet constant data

5. magic ='HDLMIRACLE',

6. lcode=string.char(0xAA, 0xAA),

7. -- source device settings

8. srcsubnet=1,

9. srcdevice=254,

10. devicetype= 0xFFFE,

11. -- command types

12. cmd={

13. chanreg= 0x0031, -- single channel regulate

14. chanregreply= 0x0032, -- single channel regulate answerback

15. chanstat= 0x0033, -- read status of single channel targets

16. chanstatreply= 0x0034, -- single channel targets status answerback

17. }

18. }

19.

20. HDL.init=function()

21. require('json')

22. require('crc16')

23. require('socket')

24.

25. localip, chunk, chunks, data

26. -- read interface data

27. data =json.pdecode(io.readproc('if-json'))

28.

29. ifnot data ornot data.eth0 then

30. error('cannot get interface data')

31. end

32.

33. -- ip header

34. HDL.iphdr=''

158

35. -- broadcast address

36. HDL.bcast= data.eth0.bcast

37.

38. -- split ip address into chunks

39. chunks= data.eth0.inetaddr:split('.')

40.

41. -- add ip address chunks

42. fori= 1, 4 do

43. chunk =tonumber(chunks[i])

44. HDL.iphdr=HDL.iphdr ..string.char(chunk)

45. end

46. end

47.

48. HDL.decode=function(packet)

49. locallen, data, src, crc

50.

51. -- primary header

52. ifpacket:sub(5, 14) ~=HDL.magicthen

53. returnnil, 'magic'

54. end

55.

56. -- leading code

57. ifpacket:sub(15, 16) ~=HDL.lcodethen

58. returnnil, 'lcode'

59. end

60.

61. -- get data length and check against

62. len=packet:byte(17)

63. iflenandlen + 16 ~=packet:len()then

64. returnnil, 'len'

65. end

66.

67. -- get packet data and check crc

68. data =packet:sub(17, len + 14)

69. crc=packet:byte(len + 15)* 0x100 + packet:byte(len + 16)

70. if crc16(data) ~=crcthen

71. returnnil, 'crc'

72. end

73.

74. -- return parsed packet

Change HDL parameters in the function to correct ones

159

13.2. Usage example – HDL dimmer control

Task of this example is to change HDL dimmer value on specific KNX group address change.

• Add new object in Objects tab

• Add Event-based script which will monitor newly created object

• In Scripting Editor specify the following code for this script

1. local value =dpt.decode(event.datahex, dt.scale)

2. HDL.chanreg(1, 12, 1, value, 1)

HDL.chanreg function description

HDL.chanreg(dstsubnet, dstdevice, chan, value, delay)

Parameters:

• dstsubnet – device subnet

• dstdevice – device address

• chan – channel number (1..n)

• value – value (0..100, or true / false)

• delay – transition time or delay in seconds (0..65535), by default is 0

Test the program

If you change the value for object 4/1/1 in Objects menu with Set Value, it will automatically
change dimmer state in HDL network.

13.3. Usage example – HDL relay control

Task of this example is to change HDL dimmer value on specific KNX group address change.

• Add new object in Objects tab

• Add Event-based script which will monitor newly created object

• In Scripting Editor specify the following code for this script

160

1. local value =dpt.decode(event.datahex, dt.bool)

2. HDL.chanreg(1, 11, 1, value))

Test the program

If you change the value for object 4/1/2 in Objects menu with Set Value, it will automatically
change the relay state in HDL network.

161

14. Communication with RS232/RS485 serial ports

The following are the naming of Serial ports for different versions of Logic Machine.

LM4

Reactor

Reactor V2

 GND GND GND

RS485 A
RS485-1 RS485 A

RS485-1 RS485 A
RS485

RS485 B RS485 B RS485 B

GND
 GND

 RS485 A

RS485-2 RS485 A
RS485-2

RS485 B RS485 B
GND

 RS485 A

RS485-3
 RS485 B

Functions

Include library before calling serial functions:
require('serial')

Opens given port, returns: port handle, or, in case of error, nil plus error message
port, err = serial.open(device, params)

Parameters:

• device port device name, required

• params parameters table, optional, (defaults are in bold):

o baudrate 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400

o parity "none", "even", "odd"

o databits 5, 6, 7, 8

o stopbits 1, 2

o duplex "full", "half" (Note: "half" is required for RS-485)

Reads the specified number of bytes, execution is blocked until read is complete
res, err = port:read(bytes)

Parameters:

• bytes number of bytes to read

Reads until timeout occurs or the specified number of bytes is received, whichever happens first.
Returns data plus number of bytes read, or, in case of error, nil plus error message.
res, err = port:read(bytes, timeout)

Parameters:

• bytes number of bytes to read

• timeout maximum time to wait for read to complete, minimum value and timer resolution is 0.1 seconds

Flushes any read/unsent bytes
port:flush()

Closes serial port, no other port functions may be called afterwards

162

port:close()

Examples

Write to port

port:write('test data')

Blocking read (script will block until 10 characters are read)

data=port:read(10)

Timeout read (script will wait for 10 characters for 20 seconds)

data=port:read(10, 20)

Close serial port

port:close()

Resident script, RS-485 echo test

-- open port on first call

if not port then

require('serial')

port = serial.open('/dev/ttyS2', { baudrate = 9600, parity = 'even', duplex =

'half' })

port:flush()

end

-- port ready

if port then

 -- read one byte

char = port:read(1, 1)

 -- send back if read succeeded

if char then

port:write(char)

end

end

163

15. Bluetooth 4.0 integration

Task:

Interconnect LogicMachine with Mio Alpha watch and map heart-rate measurement to KNX
group address. Upon excessing specific heart-rate measurement, switch on ventilation on group
address 2/2/2. In same way any other Bluetooth LE 4.0 sensor with open API or iBeacon can be
integrated with any supported standard by LogicMachine.

Some of supported Bluetooth 4.0 USB adapters:

• Broadcom BCM20702A0

• Trust 18187

• Belkin F8T065bf

• Plugable USB Bluetooth 4.0

• Laird BT820

Steps:

• Add 1byte object 1/1/1 in Objects menu

• Add the following code to Resident script with interval = 0 seconds

1. if proc then

2. line = proc:read()

3. parseline(line)

4. else

5. mac = 'D7:2D:DA:DF:E4:34' -- MAC of AlphaMio watch

6.

7. -- bring bt interface up

8. os.execute('hciconfig hci0 up')

9. os.sleep(2)

10.

11. -- read heart rate data

12. proc = io.popen('gatttool -b ' .. mac .. ' -t random --char-write-req

-a 0x0025 -n 0100 --listen')

13. count = 0

14.

15. function parseline(line)

16. local pos, rate

17.

18. -- invalid data

19. if not line then

20. return

21. end

22.

23. -- find value marker

24. pos = line:find('value: ', 1, true)

25. if not pos then

26. return

164

27. end

28.

29. -- get current heart rate

30. rate = tonumber(line:sub(pos + 10, pos + 11), 16)

31.

32. -- send each 5 reads

33. count = count + 1

34. if count == 5 then

35. grp.update('1/1/1', rate)

36. count = 0

37. end

38. end

39. end

• Add event-based script heart-rate object 1/1/1. This script will switch on ventilation if the
heart-rate is >80 and switch off if its lower

1. value = event.getvalue()

2. if value > 80 then

3. grp.write('2/2/2', true)

4. else

5. grp.write('2/2/2', false)

6. end

165

16. SIP server on LogicMachine

Task: How to pair SIP door entry systems with building automation project? In LogicMachine
we have built SIP registrar which can send SIP requests to final SIP clients. For example, one
can install Linphone SIP client app on touch devices which are used for visualization control.
Upon SIP request from door entry system, LogicMachine will forward the request to the
respective SIP client / recipient. On this client’s device a new window will appear with options
to answer or reject the call. When the call is answered, you will see video and audio from the
door entry system. When the call is finished, Linphone app will go to the background.

SIP package installation on LM:

Add the following Resident script, 60 sec sleep time, run once:

os.execute('opkg --force-depends install

http://dl.openrb.com/pkg/kamailio/terminfo_5.7-5_mxs.ipk')

os.execute('opkg --force-depends install

http://dl.openrb.com/pkg/kamailio/libncurses_5.7-5_mxs.ipk')

os.execute('opkg --force-depends install

http://dl.openrb.com/pkg/kamailio/libreadline_5.2-2_mxs.ipk')

os.execute('opkg --force-depends install

http://dl.openrb.com/pkg/kamailio/kamailio3_3.3.7-1_mxs.ipk')

os.execute('opkg --force-depends install

http://dl.openrb.com/pkg/kamailio/kamailio3-mod-maxfwd_3.3.7-

1_mxs.ipk')

os.execute('opkg --force-depends install

http://dl.openrb.com/pkg/kamailio/kamailio3-mod-registrar_3.3.7-

1_mxs.ipk')

os.execute('opkg --force-depends install

http://dl.openrb.com/pkg/kamailio/kamailio3-mod-rr_3.3.7-1_mxs.ipk')

os.execute('opkg --force-depends install

http://dl.openrb.com/pkg/kamailio/kamailio3-mod-sl_3.3.7-1_mxs.ipk')

os.execute('opkg --force-depends install

http://dl.openrb.com/pkg/kamailio/kamailio3-mod-tm_3.3.7-1_mxs.ipk')

os.execute('opkg --force-depends install

http://dl.openrb.com/pkg/kamailio/kamailio3-mod-usrloc_3.3.7-

1_mxs.ipk')

os.execute('/etc/init.d/kamailio enable')

os.execute('/etc/init.d/kamailio start')

Check if LM has Internet access

Check that IP, gateway, subnet, DNS are set correctly set.

166

SIP client application

You can use for example Linphone as your SIP client. You have to enter IP of LogicMachine in
its settings.

167

17. Object value export via XML

Make KNX objects XML readable

In the Objects tab click on the objects which you want to receive the current value by XML
request. Check the Export object

XML request from external PC

The XML request looks like this:

http://remote:remote@192.168.1.211/cgi-bin/scada-remote/request.cgi?m=xml&r=objects

Parameters:

• address – object address (e.g. “1/1/1″)

• name – object name (e.g. “My object”)

• data – decoded object value (e.g 42 or “01.01.2012″)

• datatype – object datatype (e.g. 1 or 5.001) – standard KNX data types

• time – object update time (UNIX timestamp)

• date – object update time (RFC date)

• comment – object comment (e.g. “Second floor entry lights”)

• tags – optional array of object tags (e.g. “Light”, “Second floor”)

Note! To get list of objects that have been updated after specific time you can pass an optional
“updatetime” parameter (UNIX timestamp format)

168

Login, Password for remote XML request

Login and password can be changed in Network Configuration � System � GUI Login

�Admin/Remote tab.

169

17.1. Alerts, Errors values

In similar way also Alerts and Errors can be read by XML requests.

Alerts XML request:
http://remote:remote@192.168.0.10/cgi-bin/scada-remote/request.cgi?m=xml&r=alerts

Errors XML request:
http://remote:remote@192.168.0.10/cgi-bin/scada-remote/request.cgi?m=xml&r=errors

170

18. Read Alerts RSS feeds from LogicMachine

It is possible to read Alerts and Errors messages by remote RSS readers.

Add new RSS feed in the RSS reader

• Use the following URL:

• http://remote:remote@192.168.1.211/cgi-bin/scada-remote/request.cgi?m=rss&r=alerts

• 50 latest alerts will be shown

• alert time will be shown in UNIX timestamp, alert date will be shown as RFC date

Error tab content by RSS

RSS can be used to read Error tab content as well. In this case the URL would look like:

http://remote:remote@192.168.1.211/cgi-bin/scada-remote/request.cgi?m=rss&r=errors

171

Login, Password for remote RSS requests

Login and password can be changed in System Configuration � System �User

access�Admin/Remote tab.

