
1

KNX/EIB Logic Machine2

Product Manual

Document Issue 3.0
February, 2013

Technical Support:
support@openrb.com

2

Copyright

Copyright © 2011 Embedded Systems SIA. All Rights Reserved.

Notice

Embedded Systems SIA., reserves the right to modify the information contained herein as
necessary. Embedded Systems SIA assumes no responsibility for any errors which may appear in
this document. Information in this document is provided solely to enable system and software
implementers to use KNX/EIB Logic Machine product.

Trademarks

LogicMachine is a trademark of Embedded Systems SIA.All other names and trademarks are the
property of their respective owners and are hereby acknowledged.

Introduction

Logic Machine is your easiest way to program complex logic in KNX/EIB, Modbus, BACnet,
EnOcean networks. The Logic Machine will enable you to efficiently customize building
automation processes, easily delivering unlimited flexibility benefit to end users in a cost-
effective way.

Logic Machine is an embedded platform with integrated TPUART, Ethernet, USB interfaces.
Logic Machine allows to use it as IP Router, cross-standard gateway, logic engine, visualization
WEB SCADAserver. Scripting templates provides user-friendly, flexible configuration interface.
Via applying custom scripts the Logic Machine can simultaneously act as thermostat, security
panel, lighting controller, etc

Technical support

Any faulty devices should be returned to Embedded Systems.

If there are any further technical questions concerning the product please contact our support,
available Mon-Fri 9:00 – 17:00 GMT +02:00. Please write to support@openrb.com or call +371
67648888.

Firmware updates are available at www.openrb.com

3

Caution
Security advice

The installation and assembly of electrical equipment may only be performed by skilled
electrician. The devices must not be used in any relation with equipment that supports, directly
or indirectly, human health or life or with application that can result danger of people, animals or
real value

Mounting advice

The devices are supplied in operational status. The cables connections included can be clamped
to the housing if required.

Electrical connection

The devices are constructed for the operation of protective low voltage (SELV). Grounding of
device is not needed. When switching the power supply on or off, power surges must be avoided.

4

Contents

DEVICE SPECIFICATION ... 7

LOGIC MACHINE INTERFACE IOS ... 9

FACTORY DEFAULT, DISCOVER IP ... 10

STANDARDS SUPPORTED ... 10

QUICK STARTUP GUIDE .. 12

DEFAULT IP CONFIGURATION .. 12

DISCOVER LOGIC MACHINE IP ADDRESS ... 14

FIRMWARE UPGRADE ... 15

LOGIC MACHINE FOR KNX/EIB NETWORK CONFIGURATION MANAGEMENT WITH ETS ... 16

KNX AND IP ROUTER SETTINGS .. 18

QUICK GUIDE - CREATE VISUALIZATION FOR IPAD/PC ... 22

GRAPHICAL USER INTERFACE LOGIN .. 28

1. LOGIC MACHINE CONFIGURATION ... 29

1.1. SCRIPTING .. 29

1.1.1. Adding a new script ... 30

1.1.2. Event-based scripting .. 33

1.1.3. Resident scripting .. 34

1.1.4. Scheduled scripting.. 34

1.1.5. Script editor ... 34

1.1.6. Object functions ... 35

1.1.7. Returned object functions, group communication functions .. 36

1.1.8. Group communication functions .. 37

1.1.9. Object function examples ... 37

1.1.10. Data type functions, data types ... 38

1.1.11. Data types ... 38

1.1.12. Data storage function ... 39

1.1.13. Alert function .. 40

1.1.14. Log function .. 40

1.1.15. Scheduled scripting date/time format ... 41

1.1.16. Time function .. 41

1.1.17. Data Serialization ... 41

1.1.18. String functions ... 42

1.1.19. Input and output functions .. 47

1.1.20. Script control functions ... 47

1.1.21. JSON library ... 48

1.1.22. Conversion .. 48

1.1.23. Bit operators ... 49

1.1.24. Input and Output Facilities ... 50

1.1.25. Mathematical functions ... 51

1.1.26. Table manipulations ... 53

1.1.27. Operating system facilities .. 53

1.1.28. Extended function library ... 55

1.1.29. User libraries .. 56

1.1.30. Common functions .. 57

1.1.31. Start-up (init) script .. 57

1.1.32. Tools ... 57

1.2. OBJECTS .. 59

1.2.1. Object parameters ... 59

1.2.2. Object visualization parameters .. 60

1.2.3. Change the object state .. 61

1.2.4. Object control bar ... 62

1.2.5. Filter objects .. 62

1.3. OBJECT LOGS .. 62

1.3.1. Export logs... 63

1.4. SCHEDULERS ... 66

1.4.1. Add new scheduler ... 66

5

1.4.2. Scheduler events .. 67

1.4.3. Scheduler holidays ... 67

1.5. TREND LOGS .. 68

1.5.1. Add new trend log .. 68

1.6. VISUALIZATION STRUCTURE ... 69

1.7. VISUALIZATION ... 71

1.7.1. Plan editor ... 71

1.7.2. Object .. 72

1.7.3. Plan link... 73

1.7.4. Camera .. 74

1.7.5. Graph ... 75

1.7.6. Text Label .. 76

1.7.7. Image ... 77

1.7.8. Gauge .. 77

1.8. VISUALIZATION ICONS .. 79

1.9. UTILITIES .. 80

1.10. ALERTS ... 82

1.11. ERROR LOG ... 83

1.12. LOGS ... 83

1.13. HELP ... 85

2. USER MODE VISUALIZATION .. 86

3. TOUCH VISUALIZATION ... 87

4. NETWORK CONFIGURATION .. 89

4.1. CHANGING PASSWORD .. 89

4.2. PACKAGES... 90

4.3. BACKUP AND RESTORE .. 91

4.4. UPGRADE FIRMWARE .. 91

4.5. REBOOT LOGIC MACHINE ... 91

4.6. SHUTDOWN LOGIC MACHINE .. 91

4.7. INTERFACE CONFIGURATION ... 92

4.7.1. Ethernet interface data throughput graph ... 93

4.8. ROUTING TABLE ... 94

4.8.1. Dynamic routes .. 94

4.8.2. Static routes ... 94

4.9. ARP TABLE ... 95

4.10. FTP SERVER .. 96

4.11. SYSTEM MONITORING ... 96

4.12. FIREWALL RULES (UPCOMING) .. 96

4.12.1. Zones ... 97

4.12.2. Rules ... 98

4.13. QUALITY OF SERVICE (QOS) SETTINGS (UPCOMING) ... 98

4.13.1. Interfaces .. 99

4.13.2. Classes .. 99

4.13.3. Rules ... 100

4.14. SYSTEM STATUS .. 101

4.15. NETWORK STATUS .. 102

4.16. NETWORK UTILITIES ... 102

4.17. SYSTEM LOG ... 102

4.18. RUNNING PROCESSES .. 103

5. USER MODE SCHEDULERS ... 104

5.1. EVENTS ... 104

5.2. HOLIDAYS ... 105

6. TREND LOGS ... 106

7. MODBUS RTU/TCP INTERCONNECTION WITH LM2 ... 108

7.1. MASTER FUNCTIONS.. 108

7.2. VISUALIZING MODBUS OBJECTS .. 109

7.3. USAGE EXAMPLE (MODBUS TCP) ... 109

7.4. USAGE EXAMPLE (MODBUS RTU) .. 109

6

7.5. MODBUS SLAVE EXAMPLES .. 111

7.6. MODBUS WORKING WITH SEVERAL SLAVES ON THE SAME RS485 CONNECTION 114

6. BACNETIP INTERCONNECTION WITH LM2 .. 117

7. ENOCEAN INTERCONNECTION WITH LM2 ... 119

7.1. ENOCEAN INTERFACES ... 119

7.2. ENOCEANTO KNX MAPPING ... 119

7.3. KNX TO ENOCEAN MAPPING .. 121

8. DMX INTERCONNECTION WITH LM2 ... 123

8.1. EXAMPLES .. 125

9. 3GMODEM CONNECTION WITH LM2 .. 127

9.1. EXAMPLES .. 127

9.2. SMS HANDLER PROGRAM ... 127

9.3. SEND SMS MESSAGES TO SPECIFIC SIM NUMBERS AFTER GROUP-READ OR GROUP-WRITE IS TRIGGERED

 129

10. HDL PROTOCOL INTEGRATION IN LOGIC MACHINE 2 .. 131

10.1. HDL FUNCTION ... 131

10.2. USAGE EXAMPLE – HDL DIMMER CONTROL ... 133

10.3. USAGE EXAMPLE – HDL RELAY CONTROL .. 133

11. INTERNAL IO CONTROL .. 135

12. COMMUNICATION WITH RS232/RS485 SERIAL PORTS .. 136

13. OBJECT VALUE EXPORT VIA XML .. 137

13.1. ALERTS, ERRORS VALUES ... 139

14. READ ALERTS RSS FEEDS FROM LOGIC MACHINE ... 140

7

Device specification

Application

Logic functions, visualization for home automation installations compatible with KNX/EIB.

Types of product

Logic Machine 2 Interface KNXLM2IF

Standards and norms compliance

CE conformity: EMBS-CE-110926/01 Electromagnetic compatibility

EMC: EN61000-6-1
 EN61000-6-3
PCT Certificate

Technical data:

Power supply: 12-30V DC
Power consummation: 1.3W

Interface: TPUART KNX/EIB compatible
 10BaseT/100BaseTX 1
 RS-485 3
 RS-232 1
 0-10V or binary inputs 1
 Open collector output 1
 USB2.0 2

Clamps: Power supply: 1.5mm2
 KNX bus: 1.5mm2
 Serial: 1.5mm2

IO: 1.5mm2

Operating elements LED 1 – CPU load
 1 - Activity

Enclosure: Material: Polyamide
 Color: Gray
 Dimensions: 52(W)x90(H)x51(L) mm

Usage temperature: 0C ... +45C
Storage temperature: -15C ... +55C
Weight: 150g
Warranty: 2 years

8

KNX/EIB Logic Machine kit contains:

� Embedded board with preinstalled software
� Plastic DIN-rail case
� 24V DC power supply

9

Logic Machine Interface IOs

The EIA-485 differential line consists of two pins:

A aka '-' aka TxD-/RxD- aka inverting pin
B aka '+' aka TxD+/RxD+ aka non-inverting pin

10

Factory default, discover IP

There is a reset button on the side of Logic Machine 2. You can either reboot the device by
pressing this button or reset the configuration to factory defaults:

• Press and hold for <10 sec – reboot the device

• Press and hold for >10 sec – reset networking with IP to factory default

• Press and hold for >10 sec and again press and hold for >10 sec – full reset of configuration
to factory defaults

There is also another possibility to discover IP address - LM2 has built-in zeroconf utility by
default, so using the following applications you can find out the IP:

• Windows PC – ServiceBrowser

• Linux PC – Avahi

• Android – ZeroConf Browser

• iOS – Discovery

For more info please see here: http://openrb.com/discover-ip-of-logic-machine-or-streaming-
player/

Standards supported

Logic Machine is compatible with the following standards:

• KNX/EIB TP, KNXnet/IP

• Modbus TCP, Modbus RTU

• BACnet IP, BACnet MS/TP (in development)

• GSM (Huawei E173 and similar modem support through USB) for sending SMS
notifications and controlling the installation by receiving SMS commands.

• EnOcean (EnOcean USB gateway support)

• DMX (in the box, through RS485)

• DALI (support is done over RS485 by using external RS485-DALI interface)

• Ekey biometrical access systems (RS485)

• HVAC systems can be controller through RS232 interface by using scripting

• SMTP/Email, SSL

• SIP (works as PBX for controlling calls, in development)

• XML (export object values, alerts or errors)

• RSS (read Error or Alert tab content)

• JSON, XMPP

• ..

11

The system is made so that each of the standards can be used with each other, so Logic Machine
can act as BACnet to Enocean gateway or Modbus to GSM etc.

12

Quick startup guide

1) Mount the device on DIN rail
2) Connect the KNX bus cable
3) Connect 24V power supply to the device (red pole to 24V+, grey pole to GND)
4) Connect Ethernet cable coming from the PC

Default IP configuration

Logic Machine/Network ConfigurationLogin
name

admin

Logic Machine/Network

ConfigurationPassword
admin

User mode visualization/Touch visualization
Login name

Read-only: visview

Write: viscontrol

Write + admin level: visadmin

User mode visualization/Touch visualization
Password

Read-only: visview

Write: viscontrol

Write + admin level: visadmin

IP address on LAN 192.168.0.10

Networks mask on LAN 255.255.255.0

Change IP settings

In Network � Interfaces window click on the specific interface to change the IP settings.

Protocol– specific protocol used for addressing
 None– no protocol is used
 Static IP – static IP address. By default 192.168.0.10
 DHCP – use DHCP protocol to get IP configuration.
 Current IP– the IP address got

IP address is given otherwise it’s hidden.
 PPPoE – use PPP based protocol
 Username– username to connect to the PPPoE server
 Password – password
 Keepalive – keepalive timeout
 Dial on Demand

 PPTP server IP

Network mask – network mask. By default 255.255.255.0 (/24)
Gateway IP – gateway IP address
DNS server – DNS server IP address
MTU– maximum transmission unit,
communication protocol. By default 1500

When changes are done, the following icon appears in the top
applied changes to take effect.

13

specific protocol used for addressing
no protocol is used

static IP address. By default 192.168.0.10
use DHCP protocol to get IP configuration.

the IP address got from DHCP server. This field appears only if the
IP address is given otherwise it’s hidden.

use PPP based protocol
username to connect to the PPPoE server
password
keepalive timeout

Dial on Demand– wheather to dial on demand
PPTP server IP– PPPoE server IP address to make the connection to

network mask. By default 255.255.255.0 (/24)

gateway IP address
DNS server IP address

maximum transmission unit, the largest size of the packet which could be passed in the
communication protocol. By default 1500

When changes are done, the following icon appears in the top-right corner. This should be
applied changes to take effect.

from DHCP server. This field appears only if the

PPPoE server IP address to make the connection to

st size of the packet which could be passed in the

right corner. This should be

14

Discover Logic Machine IP address

Windows PC

Easiest way is by using the utility ServiceBrowser which can be downloaded here:
http://marknelson.us/2011/10/25/dns-service-discovery-on-windows/

Linux PC
The utility called Avahi, can be downloaded here:
www.avahi.org

Android
The freely available app called ZeroConf Browser, can be downloaded in Play

Store:
https://play.google.com/store/apps/details?id=com.grokkt.android.bonjour&hl=en

15

iOS/Mac OS
The freely available app called Discovery, can be downloaded in App Store:
https://itunes.apple.com/en/app/discovery-bonjour-browser/id305441017?mt=8

For iPad install the iPhone/iPod version of the utility.

Firmware upgrade

Note! Before each upgrade please backup your visualization, scripts and object in Logic

Machine � Tools � Backup, as the database is cleaned during the upgrade.

Note! After each upgrade, we strongly recommend to clean your browser cache.

Use web browser to perform upgrade of the software of Logic Machine. Firmwares are available
in a form of images and could be downloaded from support page ofwww.openrb.com.

Complete system upgrade can be done in Network Configuration �System �Upgrade firmware

16

Logic Machine visualization upgrade can be done in Utilities tab and press on Install updates
icon. After *.LMU file is chosen from the corresponding location press Save button. The device
will be rebooted after 5 seconds and new firmware will be installed.

Logic Machine for KNX/EIB network configuration management with ETS

To use Logic Machine with KNXnet/IP functionality and program other KNX bus devices, the
device should be added into ETS Connection Manager.

• Go to Extras � Options�Communication�Configure interfaces

17

• Put some freely chosen Name for the connection

• Chose Type = KNXnet/IP

• Press Rescan button and then choose from the drop down menu found Logic Machine

• Press OK

• Back in Options ���� Communication window select newly created interface as
Communication Interface from the drop-down menu.

• To test the communication with ETS, press Test button.

18

• Make sure that bus status is Online – press button in ETS.

KNX and IP Router settings

KNX specific configuration is located in Network configuration�Network � KNX connection
window.

General tab

Mode [FT1.2 / TP-UART / EIBnet IP Tunneling] – KNX connection mode. Logic
Machine 2 has TPUART interface by default built-in
Parameter–KNX corresponding interface in OS of the system

19

KNX address – KNX physical address of the device
KNX IP features – Use this device with KNX IP features e.g. for KNXnet/IP network
configuration
Multicast interface – multicast interface to use when sending KNX telegrams to other
KNX networks over TCP/IP
Multicast IP – multicast IP address
Maximum telegrams in queue – count of maximum telegrams in the queue

Source filter tab

SRC policy [No filter / Accept selected individual addresses / Drop selected individual

addresses]– policy to apply to the list of source addresses
Address list – list of individual or group addresses. One address per line. Use * (e.g. 1.1.*
or 1/1/*) to filter all addresses in the given line. Note!KNX IP features should be on for
filter to work

Destination group filter tab

DST group filter [No filter / Accept selected individual addresses / Drop selected

individual addresses]– policy to apply to the list of destination group addresses
Address list – list of group addresses. One address per line. Use * (e.g. 1/1/*) to filter all
addresses in the given line. Note!KNX IP features should be on for filter to work

20

Destination individual filter tab

DST indiv. filter [No filter / Accept selected individual addresses / Drop selected

individual addresses]– policy to apply to the list of destination addresses
Address list – list of individual addresses. One address per line. Use * (e.g. 1.1.*) to filter
all addresses in the given line. Note!KNX IP features should be on for filter to work

Secure tunnel tab

21

You can make a secure tunnel between two KNX networks. In comparison with standard
tunnels, which use UDP protocol, this tunneling uses TCP what makes it very reliable thanks to
package delivery acknowledgement. This ensures that sender always knows if the package is
delivered to the recipient.

Secure tunnel [Disabled / Client / Server] – secure tunnel mode
Server IP – in case of secure client, server IP should be specified here
Local IP– local IP address
Network mask – network mask
Password– password

22

Quick guide - create visualization for iPad/PC

Import objects

Fastest way is to import *.ESF file from ETS in Utilities � Import ESF file.

Or connect LM to the bus and it will detect objects automatically in Objects tab once they are
activated. Objects can be added manually as well.

23

Create “floor” structure and add objects to the map

Connect to Logic Machine (Logic Machine) with default access parameters (IP: 192.168.0.10;
login/password: admin/admin)

Create “building/floor” structure and add objects to the map

In Vis.structure menu the structure of the visualization is defined and visualization backgrounds
are uploaded. To add a new building, press “Add new level” button.

Once a building is added, you can define floor structure related to this particular building. To add
a new floor, press on the icon.

24

Choose either to add as second floor level or add plan for this particular floor level.

After add a new floor background image by pressing on icon and choose floor image from
local machine. Any of BMP, GIF, JPEG or PNG image files are supported to upload.

Add objects to newly created visualization map

After the building and floor structure is defined in Buildings tab, it is visualized
in Visualization tab. Controlled and monitored objects can be added and managed in this section.
Both side bars can be minimized by pressing on lef/rigt arrow icon making the map more visible
especially on small displays.

25

Existing objects can be added to the map by clicking on Unlock current floor plan for

editing button. Once the object parameters are defined, press Add new object button and newly
created object will appear. You can move the object to the location it will be located. Note that
while being in editing mode, the object will not work.

When all necessary objects and cameras are added, press Save and reload floor plan button so
everything starts functioning.

Launching visualization on touch device (iPad in this case)

• Make sure your iPad is connected wirelessly to the Logic Machine (either through
separate access point or directly to Logic Machine’s USB WiFi adapter).

• In the browser enter Logic Machine’s IP (default 192.168.0.10).

• Click on the User mode visualization or Touch visualization icon.

• Save the application as permanent/shortcut in your iPad

26

Launching visualization on PC, iPad or any other touch device with large enough screen

• Make sure your PC/touch device is able to access Logic Machine and enter it’s IP in the
browser (default 192.168.0.10).

• Click on the User Mode Visualization and enter the “floor” you want to see.

• Then minimize side bar by pressing on left-arrow icon to make the map more visible.

27

28

Graphical User Interface Login

KNX/EIB Logic Machine has IP address 192.168.0.10 set by default to LAN1 interface. Use this
address as www address in the browser's address field.

Note! Make sure that the PC connecting to the Logic Machine has IP set from the same subnet.

After successful login a default page appears.

• Logic Machine – visualization creator, scripts, object relations, alerts, KNX objects and
KNX objects, designing building view and visualization maps

• Network configuration – IP and KNXnet/IP specific configuration

• User mode visualization – defined visualization maps with objects

• Touch visualization – Visualization system for iPhone/iPod/iPad/Android touch screen
devices

• User mode schedulers – User defined schedulers

• Trend logs – Trends for data logs

29

1. Logic Machine configuration

Login Password

admin admin

This is a home directory for Logic Machine configuration management. The main menu consists
of the following menus:

Scripting – scripting repository management
Objects– list of KNX network objects
Object logs– KNX bus object historical logs
Schedulers– administrator interface for user mode schedulers
Trend logs – administrator interface for trend logs
Vis.structure – building definition and image file upload
Visualization– Visualization management, control and monitoring
Vis.icons– icon management
Utilities – utilities including import from ETS, reset object DB, backup, update system
installation
Alerts – alert messages defined with alert function
Logs – log messages defined with log function
Error log – error messages in KNX bus
Help – documentation for scripting syntaxes

1.1. Scripting

Scripting menu allows adding and managing various scripts, depending on the type of the script.
Lua programming language is used to implement user scripts. Most of the Lua language aspects
are covered in the first edition of "Programming in Lua" which is freely available at
http://lua.org/pil/

30

Note!Data format — in most cases data is stored and transferred between Logic Machine parts

using hex-encoded strings (2 bytes per 1 byte of data).

There are six main types of scripts:

Event-based – scripts that are executed when a group event occurs on the bus. Usually used when

nearly real-time response is required.

Resident– scripts that use polling to check for object state changes. Usually used for heating and

ventilation when data is gathered from more than one group address.

Scheduled– scripts that run at the required time and day. Can be used for various security systems

and presence simulations.

User libraries – user defined scripts to call from other scripts

Common functions – common functions to call from other scripts

Start-up (init) script – initialization script that is run upon system starting.

1.1.1. Adding a new script

When pressing on the arrow on the lower side of the Event-based, Resident or Scheduled buttons,
two possibilities appear:

List view – sort scripts in list view
Add new script – add new script to the list

The following fields should be filled when adding a new script:

Event-based

Script name – the name of the script
Event group address –

 icon appears on the right side of th
form of the group-address is, for example, 1/1/1.
Active– specifies whether the script is active (green circle) or disabled (red circle)
Execute on group read

telegram

Category – a new or existing name of the category the script will be included. This will
not affect on script action, helps only by grouping the scripts and watching by categories
in Tools � Print script listings page
Description– description of the script

Resident

Script name – the name of the script

31

the name of the script
– allows to enter only digits from 0..9 and / as a separator. When

icon appears on the right side of the text-box, wrong address form is used. Correct
address is, for example, 1/1/1.

specifies whether the script is active (green circle) or disabled (red circle)
Execute on group read– specifies whether the script is executed on KNX

a new or existing name of the category the script will be included. This will
not affect on script action, helps only by grouping the scripts and watching by categories

script listings page
description of the script

the name of the script

allows to enter only digits from 0..9 and / as a separator. When

box, wrong address form is used. Correct

specifies whether the script is active (green circle) or disabled (red circle)
executed on KNX group read

a new or existing name of the category the script will be included. This will
not affect on script action, helps only by grouping the scripts and watching by categories

32

Sleep interval (seconds) – interval after which the script will be executed.
Active– specifies whether the script is active (green circle) or disabled (red circle)
Category – a new or existing name of the category the script will be included. This will
not affect on script action, helps only by grouping the scripts and watching by categories
in Tools � Print script listings page
Description– description of the script

Scheduled

Script name – the name of the script
Minute – Minute

Hour – Hour
Day of the month – Day of the month

Month of the year – Month of the year
Day of the week – Day of the week

Active– specifies whether the script is active (green circle) or disabled (red circle)
Category – a new or existing name of the category the script will be included. This will
not affect on script action, helps only by grouping the scripts and watching by categories
in Tools � Print script listings page
Description– description of the script

33

List of scripts

There are five actions you can do with each of the script:

Duplicate – Duplicate the script with its source code
Editor – Enter scripting editor to write specific code for the particular program
Active – Make script active (green) or deactivate it (red)
Edit – Edit script name, description, category and other parameters

Delete – Delete the script. When pressing this icon the confirmation is asked to accept the
delete.

1.1.2. Event-based scripting

Event-based scripting can be used to implement custom logic for group address events. User-
defined function is executed when a "group write" or “group read” (if checked while adding the
script) event occurs for given group address. Event information is stored in global event
variable.Variable contents:

• dstraw (integer) — raw destination group address
• srcraw (integer) — raw source individual address
• dst (string) — decoded destination group address (for example: 1/1/4)
• src (string) — decoded source individual address (for example: 1.1.2)
• type (string) — type of event, either "groupwrite", "groupread", "groupresponse".

Currently user-defined scripts are bound to "group write" events only.
• dataraw (integer/string) — raw binary data
• datahex (string) — data as a hex-encoded string which can be used to convert value to

Lua variable

Note!event variable is available only in Event-based functions, not in Resident and Scheduled.

Note! All event-based scripts are executed in a single queue-like manner. Make sure event

scripts do not contain infinite loops, sleep calls or other blocking parts.

34

Note! To get event value in scripts, use the following command: a = event.getvalue()

1.1.3. Resident scripting

Resident scripts are executed infinite amount of times. Scripts are put into inactive state after
each call and are resumed after delay timer expires.

Note!even though resident scripts are executed in parallel they should not have infinite loops or

it will not be possible to reload scripts after editing.

1.1.4. Scheduled scripting

Scheduled scripts are executed when the system time matches the specified script start time.
Scheduled script is run only once after each timer call.

1.1.5. Script editor

When a script is added icon appears in Editor column that allows opening a script in
scripting editor and re-working it with built-in code snippets.

35

The idea is that not knowing the syntaxes you get a helper for writing your own scripts. Code
snippets save also a time and make the coding much more convenient. After clicking on
appropriate snippet, it automatically adds code to the editor field.

There are five main groups of Script editor:

Helpers – predefined code snippets, like if-then statement. Helpers consist of three main sub-
groups:

Conditionals – If Else If, If Then etc.
Loops and iterators – Array, Repeat..Untiletc
Math – Random value, Ceiling, Absolute value, Round etc.
Objects/KNX bus – Get object value, Group read, Group write, Update interval etc.
Storage – Get data from storage, Save data to storage
Script control – Get other script status, enable or disable other scripts
Alerts and logs – Alert, Log variables, Formatted alert
Time functions – Delay script execution
Miscellaneous – Sunrise/sunset etc.
Serial – Communication through internal Logic Machine IO ports
Modbus – Create RTU/TCP connection, Write register, Read register etc.
DMX – Communication with DMX devices

Group addresses – existing group addresses on the KNX bus
Objects by name – chose object by name
Tags – choose object by tag
Data types – choose object by data type

1.1.6. Object functions

grp provides simplified access to the objects stored in the database and group address request
helpers.

36

Most functions use alias parameter — object group address or unique object name. (e.g. '1/1/1' or
'My object')

grp.getvalue(alias)
Returns value for the given alias or Lua nil when object cannot be found.

grp.find(alias)
Returns single object for the given alias. Object value will be decoded automatically only if the
data type has been specified in the 'Objects' module. Returns Lua nil when object cannot be
found, otherwise it returns Lua table with the following items:

• address — object group address

• updatetime — latest update time in UNIX timestamp format. Use Lua os.date() to convert
to readable date formats

When object data type has been specified in the 'Objects' module the following fields are
available:

• name — unique object name

• datatype — object data type as specified by user

• decoded — set to true when decoded value is available

• value — decoded object value

grp.tag(tags, mode)
Returns Lua table containing objects with the given tag. Tags parameter can be either
Lua table or a string. Mode parameter can be either 'all' (return objects that have all of the given
tags) or 'any' (default — returns objects that have any of the given tags). You can useReturned

object functions on the returned table.

grp.alias(alias)
Converts group address to object name or name to address. Returns Lua nil when object cannot
be found.

1.1.7. Returned object functions, group communication functions

Objects received by using grp.find(alias) or grp.tag(tags, mode) have the following functions
attached to them:

Always check that the returned object was found otherwise calling these functions will result in
an error. See the example below.

object:write(value, datatype)
Sends group write request to object's group address. Data type is taken from the database if not
specified as second parameter. Returns Lua boolean as the result.

object:response(value, datatype)
Similar to object:write. Sends group response request to object's group address.

37

object:read()
Sends group read request to object's group address. Note: this function returns immediately and
cannot be used to return the result of read request. Use event-based script instead.

object:update(value, datatype)
Similar to object:write, but does not send new value to the bus. Useful for objects that are used
only in visualization.

1.1.8. Group communication functions

These functions should only be used if it is required to access objects by group address directly,
it is recommended to use single or multiple object functions.

grp.write(alias, value, datatype)
Sends group write request to the given alias. Data type is taken from the database if not specified
as third parameter. Returns Lua boolean as the result.

grp.response(alias, value, datatype)
Similar to grp.write. Sends group response request to the given alias.

grp.read(alias)
Sends group read request to the given alias. Note: this function returns immediately and cannot
be used to return the result of read request. Use event-based script instead.

grp.update(alias, value, datatype)
Similar to grp.write, but does not send new value to the bus. Useful for objects that are used only
in visualization.

1.1.9. Object function examples

Find object by name and write new value.

1. myobject=grp.find('My object')

2. -- grp.find will return nil if object was not found

3. if myobject then

4. myobject:write(1)-- update object value with 1

5. end

Find object by address and write new value.

1. myobject=grp.find('1/1/15')

2. -- verify that the requested object was found

3. if myobject then

4. myobject:write(52.12, dt.float16)-- explicitly set data type to dt.float16 (2-byte

floating point)

38

5. end

Switch all binary objects tagged 'lights' off.

1. lights =grp.tag('lights')

2. lights:write(false)

Group write to the specified group address and data type.

1. grp.write('1/1/1', true, dt.bool)-- write 1-bit 'on' to 1/1/1

2. grp.write('1/1/2', 50, dt.scale)-- write 1-byte 50% to 1/1/2

1.1.10. Data type functions, data types

knxdatatype object provides data encoding and decoding between Lua and KNX data formats.

knxdatatype.decode(value, datatype)
Converts hex-encoded data to Lua variable based on given data type. Data type is specified
either as KNX primary data type (integer between 1 and 16) or a secondary data type (integer
between 1000 and 16000).Return values:

• success — decoded data as Lua variable (type depends on data type), value length in bytes

• error — nil, error string

1.1.11. Data types

The following data types can be used for encoding and decoding of KNX data. Data
representation on Lua level and predefined constants (in bold) is given below:

• 1 bit (boolean) - dt.bool — boolean

• 2 bit (1 bit controlled) - dt.bit2 — number

• 4 bit (3 bit controlled) - dt.bit4 — number

• 1 byte ASCII character - dt.char — string

• 1 byte unsigned integer - dt.uint8 — number

• 1 byte signed integer - dt.int8 — number

• 2 byte unsigned integer - dt.uint16 — number

• 2 byte signed integer - dt.int16 — number

• 2 byte floating point - dt.float16 — number

• 3 byte time / day - dt.time — table with the following items:
o day — number (0-7)
o hour — number (0-23)
o minute — number (0-59)
o second — number (0-59)

• 3 byte date - dt.date — table with the following items:
o day — number (1-31)
o month — number (1-12)
o year — number (1990-2089)

39

• 4 byte unsigned integer - dt.uint32 — number

• 4 byte signed integer - dt.int32 — number

• 4 byte floating point - dt.float32 — number

• 4 byte access control - dt.access — number, currently not fully supported

• 14 byte ASCII string - dt.string — string, null characters ('\0') are discarded during
decoding

1.1.12. Data storage function

storage object provides persistent key-value data storage for user scripts. Only the following Lua
data types are supported:

• boolean

• number

• string

• table

storage.set(key, value)
Sets new value for the given key. Old value is overwritten. Returns boolean as the result and an
optional error string.

storage.get(key, default)
Gets value for the given key or returns default value (nil if not specified) if key is not found in
the data storage.

Note: all user scripts share the same data storage. Make sure that same keys are not used to store
different types of data.

Examples

• The following examples shows the basic syntax of storage.set. Result will return
boolean true since the passed parameters are correct

result=storage.set('my_stored_value_1', 12.21)

• This example will return false as the result because we are trying to store a function
which is not possible.

1. testfn=function(t)

2. return t * t

3. end

4. result =storage.set('my_stored_value_2', testfn)-- this will result in an error

40

• The following examples shows the basic syntax of storage.get. Assuming that key value
was not found, first call will return nil while second call will return number 0 which was
specified as a default value.

1. result =storage.get('my_stored_value_3')-- returns nil if value is not found

2. result =storage.get('my_stored_value_3', 0)-- returns 0 if value is not found

• When storing tables make sure to check the returned result type. Assume we have created
a storage item with key test_object_data.

1. objectdata={}

2. objectdata.temperature=23.1

3. objectdata.scene='default'

4. result =storage.set('test_object_data', objectdata)-- store objectdata variable as

'test_object_data'

• Now we are retrieving data from storage. Data type is checked for correctness.

1. objectdata=storage.get('test_object_data')

2. if type(objectdata)=='table'then

3. if objectdata.temperature> 24 then

4. -- do something if temperature level is too high

5. end

6. end

1.1.13. Alert function

alert(message, [var1, [var2, [var3]]])
Stores alert message and current system time in the main database. All alerts are accessible in the
"Alerts" module. This function behaves exactly as Lua string.format.

Example

1. temperature = 25.3

2. if temperature > 24 then

3. -- resulting message: 'Temperature levels are too high: 25.3'

4. alert('Temperature level is too high: %.1f', temperature)

5. end

1.1.14. Log function

log(var1, [var2, [var3, ...]])
Converts variables to human-readable form and stores them in the main database. All items are
accessible in the "Logs" module.

41

Example

1. -- log function accepts Lua nil, boolean, number and table (up to 5 nested levels) type

variables

2. a ={ key1 ='value1', key2 =2}

3. b ='test'

4. c =123.45

5. -- logs all passed variables

6. log(a, b, c)

1.1.15. Scheduled scripting date/time format

Scheduled scripting uses standard cron format for date/time parameters. Valid values are:

* — execute script every minute, hour or day.

*/N — execute script every N minutes, hours or days. N is an integer, script is executed
when current value divided by N gives 0 in modulo. For example, script with hour
parameter set to */8 will be executed when hour is 0, 8 and 16.

N — execute script exactly at N minute, hour or day.

N-K — execute script when minute, hour or day is between N-K range (inclusive).

N,K — it is possible to specify several N and N-K type parameters separated by comma.
For example, script with minute parameter set to 15,50-52 will get executed when minute is
15, 50, 51 and 52

1.1.16. Time function

os.sleep(delay)
Delay the next command execution for the delay seconds.

os.microtime ()
Returns two values: current timestamp in seconds and timestamp fraction in nanoseconds

os.udifftime (sec, usec)
Returns time difference as floating point value between now and timestamp components passed
to this function (seconds, nanoseconds)

1.1.17. Data Serialization

serialize.encode (value)
Generates a storable representation of a value.

serialize.decode (value)
Creates a Lua value from a stored representation.

42

1.1.18. String functions

This library provides generic functions for string manipulation, such as finding and extracting
substrings, and pattern matching. When indexing a string in Lua, the first character is at position
1 (not at 0, as in C).
Indices are allowed to be negative and are interpreted as indexing backwards, from the end of the
string. Thus, the last character is at position -1, and so on.
The string library provides all its functions inside the table string. It also sets a metatable for
strings where the __index field points to the string table. Therefore, you can use the string
functions in object-oriented style. For instance, string.byte(s, i) can be written as s:byte(i). The
string library assumes one-byte character encodings.

string.trim (str)
Trims the leading and trailing spaces off a given string.

string.split (str, sep)
Splits string by given separator string. Returns Lua table.

string.byte (s [, i [, j]])
Returns the internal numerical codes of the characters s[i], s[i+1], ···, s[j]. The default value for i
is 1; the default value for j is i. Note that numerical codes are not necessarily portable across
platforms.

string.char (···)
Receives zero or more integers. Returns a string with length equal to the number of arguments,
in which each character has the internal numerical code equal to its corresponding argument.
Note that numerical codes are not necessarily portable across platforms.

string.find (s, pattern [, init [, plain]])
Looks for the first match of pattern in the string s. If it finds a match, then find returns the
indices of s where this occurrence starts and ends; otherwise, it returns nil. A third, optional
numerical argument init specifies where to start the search; its default value is 1 and can be
negative. A value of true as a fourth, optional argument plain turns off the pattern matching
facilities, so the function does a plain "find substring" operation, with no characters in pattern
being considered "magic". Note that if plain is given, then init must be given as well. If the
pattern has captures, then in a successful match the captured values are also returned, after the
two indices.

string.format (formatstring, ···)
Returns a formatted version of its variable number of arguments following the description given
in its first argument (which must be a string). The format string follows the same rules as the
printf family of standard C functions. The only differences are that the options/modifiers *, l, L,
n, p, and h are not supported and that there is an extra option, q. The q option formats a string in
a form suitable to be safely read back by the Lua interpreter: the string is written between double
quotes, and all double quotes, newlines, embedded zeros, and backslashes in the string are
correctly escaped when written. For instance, the call

 string.format('%q', 'a string with "quotes" and \n new line')

will produce the string:

43

 "a string with \"quotes\" and \

 new line"

The options c, d, E, e, f, g, G, i, o, u, X, and x all expect a number as argument, whereas q and s
expect a string. This function does not accept string values containing embedded zeros, except as
arguments to the q option.

44

string.gmatch (s, pattern)
Returns an iterator function that, each time it is called, returns the next captures from pattern
over string s. If pattern specifies no captures, then the whole match is produced in each call. As
an example, the following loop

1. s = "hello world from Lua"
2. for w in string.gmatch(s, "%a+") do
3. print(w)
4. end

will iterate over all the words from string s, printing one per line. The next example collects all
pairs key=value from the given string into a table:

1. t = {}
2. s = "from=world, to=Lua"
3. for k, v in string.gmatch(s, "(%w+)=(%w+)") do
4. t[k] = v
5. end

For this function, a '^' at the start of a pattern does not work as an anchor, as this would prevent
the iteration.

string.gsub (s, pattern, repl [, n])
Returns a copy of s in which all (or the first n, if given) occurrences of the pattern have been
replaced by a replacement string specified by repl, which can be a string, a table, or a function.
gsub also returns, as its second value, the total number of matches that occurred.
If repl is a string, then its value is used for replacement. The character % works as an escape
character: any sequence in repl of the form %n, with n between 1 and 9, stands for the value of
the n-th captured substring (see below). The sequence %0 stands for the whole match. The
sequence %% stands for a single %.
If repl is a table, then the table is queried for every match, using the first capture as the key; if
the pattern specifies no captures, then the whole match is used as the key.
If repl is a function, then this function is called every time a match occurs, with all captured
substrings passed as arguments, in order; if the pattern specifies no captures, then the whole
match is passed as a sole argument.
If the value returned by the table query or by the function call is a string or a number, then it is
used as the replacement string; otherwise, if it is false or nil, then there is no replacement (that is,
the original match is kept in the string).

Examples:
x = string.gsub("hello world", "(%w+)", "%1 %1")

 --> x="hello hello world world"

x = string.gsub("hello world", "%w+", "%0 %0", 1)

 --> x="hello hello world"

x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")

 --> x="world hello Lua from"

x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)

 --> x="home = /home/roberto, user = roberto"

x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)

 return loadstring(s)()
 end)

 --> x="4+5 = 9"

local t = {name="lua", version="5.1"}

45

x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t)

 --> x="lua-5.1.tar.gz"

string.len (s)
Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are
counted, so "a\000bc\000" has length 5.

string.lower (s)
Receives a string and returns a copy of this string with all uppercase letters changed to
lowercase. All other characters are left unchanged. The definition of what an uppercase letter is
depends on the current locale.

string.match (s, pattern [, init])
Looks for the first match of pattern in the string s. If it finds one, then match returns the captures
from the pattern; otherwise it returns nil. If pattern specifies no captures, then the whole match is
returned. A third, optional numerical argument init specifies where to start the search; its default
value is 1 and can be negative.

string.rep (s, n)
Returns a string that is the concatenation of n copies of the string s.

string.reverse (s)
Returns a string that is the string s reversed.

string.sub (s, i [, j])
Returns the substring of s that starts at i and continues until j; i and j can be negative. If j is
absent, then it is assumed to be equal to -1 (which is the same as the string length). In particular,
the call string.sub(s,1,j) returns a prefix of s with length j, and string.sub(s, -i) returns a suffix of
s with length i.

string.upper (s)
Receives a string and returns a copy of this string with all lowercase letters changed to
uppercase. All other characters are left unchanged. The definition of what a lowercase letter is
depends on the current locale.

Patterns
Character Class:
A character class is used to represent a set of characters. The following combinations are allowed
in describing a character class:

• x: (where x is not one of the magic characters ^$()%.[]*+-?) represents the character x
itself.
• .: (a dot) represents all characters.
• %a: represents all letters.
• %c: represents all control characters.
• %d: represents all digits.
• %l: represents all lowercase letters.
• %p: represents all punctuation characters.
• %s: represents all space characters.
• %u: represents all uppercase letters.
• %w: represents all alphanumeric characters.
• %x: represents all hexadecimal digits.
• %z: represents the character with representation 0.

46

• %x: (where x is any non-alphanumeric character) represents the character x. This is the
standard way to escape the magic characters. Any punctuation character (even the non
magic) can be preceded by a '%' when used to represent itself in a pattern.
• [set]: represents the class which is the union of all characters in set. A range of
characters can be specified by separating the end characters of the range with a '-'. All
classes %x described above can also be used as components in set. All other characters in
set represent themselves. For example, [%w_] (or [_%w]) represents all alphanumeric
characters plus the underscore, [0-7] represents the octal digits, and [0-7%l%-] represents
the octal digits plus the lowercase letters plus the '-' character.
• The interaction between ranges and classes is not defined. Therefore, patterns like [%a-
z] or [a-%%] have no meaning.
• [^set]: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase letter
represents the complement of the class. For instance, %S represents all non-space characters.
The definitions of letter, space, and other character groups depend on the current locale. In
particular, the class [a-z] may not be equivalent to %l.

Pattern Item:
A pattern item can be:

• a single character class, which matches any single character in the class;
• a single character class followed by '*', which matches 0 or more repetitions of
characters in the class. These repetition items will always match the longest possible
sequence;
• a single character class followed by '+', which matches 1 or more repetitions of
characters in the class. These repetition items will always match the longest possible
sequence;
• a single character class followed by '-', which also matches 0 or more repetitions of
characters in the class. Unlike '*', these repetition items will always match the shortest
possible sequence;
• a single character class followed by '?', which matches 0 or 1 occurrence of a character
in the class;
• %n, for n between 1 and 9; such item matches a substring equal to the n-th captured
string (see below);
• %bxy, where x and y are two distinct characters; such item matches strings that start
with x, end with y, and where the x and y are balanced. This means that, if one reads the
string from left to right, counting +1 for an x and -1 for a y, the ending y is the first y
where the count reaches 0. For instance, the item %b() matches expressions with
balanced parentheses.

Pattern:
A pattern is a sequence of pattern items. A '^' at the beginning of a pattern anchors the match at
the beginning of the subject string. A '$' at the end of a pattern anchors the match at the end of
the subject string. At other positions, '^' and '$' have no special meaning and represent
themselves.

Captures:
A pattern can contain sub-patterns enclosed in parentheses; they describe captures. When a
match succeeds, the substrings of the subject string that match captures are stored (captured) for
future use. Captures are numbered according to their left parentheses. For instance, in the pattern
"(a*(.)%w(%s*))", the part of the string matching "a*(.)%w(%s*)" is stored as the first capture

47

(and therefore has number 1); the character matching "." is captured with number 2, and the part
matching "%s*" has number 3.
As a special case, the empty capture () captures the current string position (a number). For
instance, if we apply the pattern "()aa()" on the string "flaaap", there will be two captures: 3 and
5. A pattern cannot contain embedded zeros. Use %z instead.

1.1.19. Input and output functions

io.exists (path)
Checks if given path (file or directory) exists. Return boolean.

io.readfile (file)
Reads whole file at once. Return file contents as a string on success or nil on error.

io.writefile (file, data)
Writes given data to a file. Data can be either a value convertible to string or a table of such
values. When data is a table then each table item is terminated by a new line character. Return
boolean as write result when file can be open for writing or nil when file cannot be accessed.

Example: Write event status to log file located on plugged USB flash drive:

1. value = knxdatatype.decode(event.datahex, dt.bool)

2. data = string.format('%s value is %s', os.date('%c'), tostring(value))

3. -- write to the end of log file preserving all previous data

4. file = io.open('/mnt/usb/log.txt', 'a+')

5. file:write(data .. '\r\n')

6. file:close()

Output:

Mon Jan 3 05:25:13 2011 value is false
Mon Jan 3 05:25:14 2011 value is true
Mon Jan 3 05:25:32 2011 value is false
Mon Jan 3 05:25:33 2011 value is true

Example: Read data from file (config in format key=value)

1. for line in io.lines('/mnt/usb/config.txt') do

2. -- split line by '=' sing

3. items = line:split('=')

4. -- two items, line seems to be valid

5. if #items == 2 then

6. key = items[1]:trim()

7. value = items[2]:trim()

8. alert('[config] %s = %s', key, value)

9. end

10. end

1.1.20. Script control functions

script.enable('scriptname')

48

Enable the script with the name scriptname.

script.disable('scriptname')
Disable the script with the name scriptname.

status = script.status('scriptname')
Returns true/false if script is found, nil otherwise

1.1.21. JSON library

Note: json is not loaded by default, use require('json') before calling any functions from this
library.

json.encode (value)
Converts Lua variable to JSON string. Script execution is stopped in case of an error.

json.pencode (value)
Converts Lua variable to JSON string in protected mode, returns nil on error.

json.decode (value)
Converts JSON string to Lua variable. Script execution is stopped in case of an error.

json.pdecode (value)
Converts JSON string to Lua variable in protected mode, returns nil on error.

1.1.22. Conversion

Compatibility layer: lmcore is an alias of cnv.

cnv.strtohex (str)
Converts given binary string to a hex-encoded string.

cnv.hextostr (hex [, keepnulls])
Converts given hex-encoded string to a binary string. NULL characters are ignored by default,
but can be included by setting second parameter to true.

cnv.tonumber (value)
Converts the given value to number using following rules: numbers and valid numeric strings are
treated as is, boolean true is 1, boolean false is 0, everything else is nil.

cnv.hextoint(hexvalue, bytes)
Converts the given hex string to and integer of a given length in bytes.

cnv.inttohex(intvalue, bytes)
Converts the given integer to a hex string of given bytes.

49

cnv.strtohex(str)
Converts the given binary string to a hex-encoded string.

cnv.hextostr(hexstr)
Converts the given hex-encoded string to a binary string.

1.1.23. Bit operators

bit.bnot (value)
Binary not

bit.band (x1 [, x2...])
Binary and between any number of variables

bit.bor (x1 [, x2...])
Binary and between any number of variables

bit.bxor (x1 [, x2...])
Binary and between any number of variables

bit.lshift (value, shift)
Left binary shift

bit.rshift (value, shift)
Right binary shift

50

1.1.24. Input and Output Facilities

The I/O library provides two different styles for file manipulation. The first one uses implicit file
descriptors; that is, there are operations to set a default input file and a default output file, and all
input/output operations are over these default files. The second style uses explicit file
descriptors.
When using implicit file descriptors, all operations are supplied by table io. When using explicit
file descriptors, the operation io.open returns a file descriptor and then all operations are supplied
as methods of the file descriptor.
The table io also provides three predefined file descriptors with their usual meanings from C:
io.stdin, io.stdout, and io.stderr. The I/O library never closes these files.
Unless otherwise stated, all I/O functions return nil on failure (plus an error message as a second
result and a system-dependent error code as a third result) and some value different from nil on
success.

io.close ([file])
Equivalent to file:close(). Without a file, closes the default output file.

io.flush ()
Equivalent to file:flush over the default output file.

io.input ([file])
When called with a file name, it opens the named file (in text mode), and sets its handle as the
default input file. When called with a file handle, it simply sets this file handle as the default
input file. When called without parameters, it returns the current default input file. In case of
errors this function raises the error, instead of returning an error code.

io.lines ([filename])
Opens the given file name in read mode and returns an iterator function that, each time it is
called, returns a new line from the file. Therefore, the construction

for line in io.lines(filename) do body end

will iterate over all lines of the file. When the iterator function detects the end of file, it returns
nil (to finish the loop) and automatically closes the file.
The call io.lines() (with no file name) is equivalent to io.input():lines(); that is, it iterates over the
lines of the default input file. In this case it does not close the file when the loop ends.

io.open (filename [, mode])
This function opens a file, in the mode specified in the string mode. It returns a new file handle,
or, in case of errors, nil plus an error message. The mode string can be any of the following:

• "r": read mode (the default);
• "w": write mode;
• "a": append mode;
• "r+": update mode, all previous data is preserved;
• "w+": update mode, all previous data is erased;
• "a+": append update mode, previous data is preserved, writing is only allowed at the
end of file.

The mode string can also have a 'b' at the end, which is needed in some systems to open the file
in binary mode. This string is exactly what is used in the standard C function fopen.

51

io.output ([file])
Similar to io.input, but operates over the default output file.

1.1.25. Mathematical functions

This library is an interface to the standard C math library. It provides all its functions inside the
table math.

math.abs (x)
Returns the absolute value of x.

math.acos (x)
Returns the arc cosine of x (in radians).

math.asin (x)
Returns the arc sine of x (in radians).

math.atan (x)
Returns the arc tangent of x (in radians).

math.atan2 (y, x)
Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to find the
quadrant of the result. (It also handles correctly the case of x being zero.)

math.ceil (x)
Returns the smallest integer larger than or equal to x.

math.cos (x)
Returns the cosine of x (assumed to be in radians).

math.cosh (x)
Returns the hyperbolic cosine of x.

math.deg (x)
Returns the angle x (given in radians) in degrees.

math.exp (x)

Returns the value ��.

math.floor (x)
Returns the largest integer smaller than or equal to x.

math.fmod (x, y)
Returns the remainder of the division of x by y that rounds the quotient towards zero.

math.frexp (x)

Returns m and e such that x = �2�, e is an integer and the absolute value of m is in the range
[0.5, 1) (or zero when x is zero).

math.huge

52

The value HUGE_VAL, a value larger than or equal to any other numerical value.
math.ldexp (m, e)

Returns �2�, (e should be an integer).

math.log (x)
Returns the natural logarithm of x.

math.log10 (x)
Returns the base-10 logarithm of x.

math.max (x, ···)
Returns the maximum value among its arguments.

math.min (x, ···)
Returns the minimum value among its arguments.

math.modf (x)
Returns two numbers, the integral part of x and the fractional part of x.

math.pi
The value of pi.

math.pow (x, y)

Returns �� . (You can also use the expression x^y to compute this value.)

math.rad (x)
Returns the angle x (given in degrees) in radians.

math.random ([m [, n]])
This function is an interface to the simple pseudo-random generator function rand provided by
ANSI C. (No guarantees can be given for its statistical properties.)
When called without arguments, returns a uniform pseudo-random real number in the range
[0,1). When called with an integer number m, math.random returns a uniform pseudo-random
integer in the range [1,m]. When called with two integer numbers m and n, math.random returns
a uniform pseudo-random integer in the range [m, n].

math.randomseed (x)
Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal sequences of
numbers.

math.sin (x)
Returns the sine of x (assumed to be in radians).

math.sinh (x)
Returns the hyperbolic sine of x.

math.sqrt (x)
Returns the square root of x. (You can also use the expression x^0.5 to compute this value.)

math.tan (x)
Returns the tangent of x (assumed to be in radians).

53

math.tanh (x)
Returns the hyperbolic tangent of x.

1.1.26. Table manipulations

This library provides generic functions for table manipulation. It provides all its functions inside
the table table. Most functions in the table library assume that the table represents an array or a
list. For these functions, when we talk about the "length" of a table we mean the result of the
length operator.

table.concat (table [, sep [, i [, j]]])
Given an array where all elements are strings or numbers, returns table[i]..sep..table[i+1] ···

sep..table[j]. The default value for sep is the empty string, the default for i is 1, and the default
for j is the length of the table. If i is greater than j, returns the empty string.

table.insert (table, [pos,] value)
Inserts element value at position pos in table, shifting up other elements to open space, if
necessary. The default value for pos is n+1, where n is the length of the table, so that a call
table.insert(t,x) inserts x at the end of table t.

table.maxn (table)
Returns the largest positive numerical index of the given table, or zero if the table has no positive
numerical indices. (To do its job this function does a linear traversal of the whole table.)

table.remove (table [, pos])
Removes from table the element at position pos, shifting down other elements to close the space,
if necessary. Returns the value of the removed element. The default value for pos is n, where n is
the length of the table, so that a call table.remove(t) removes the last element of table t.

table.sort (table [, comp])
Sorts table elements in a given order, in-place, from table[1] to table[n], where n is the length of
the table. If comp is given, then it must be a function that receives two table elements, and
returns true when the first is less than the second (so that not comp(a[i+1],a[i]) will be true after
the sort). If comp is not given, then the standard Lua operator < is used instead.
The sort algorithm is not stable; that is, elements considered equal by the given order may have
their relative positions changed by the sort.

1.1.27. Operating system facilities

os.date ([format [, time]])
Returns a string or a table containing date and time, formatted according to the given string
format. If the time argument is present, this is the time to be formatted (see the os.time function
for a description of this value). Otherwise, date formats the current time.
If format starts with '!', then the date is formatted in Coordinated Universal Time. After this
optional character, if format is the string "*t", then date returns a table with the following fields:
year (four digits), month (1--12), day (1--31), hour (0--23), min (0--59), sec (0--61), wday
(weekday, Sunday is 1), yday (day of the year), and isdst (daylight saving flag, a boolean).
If format is not "*t", then date returns the date as a string, formatted according to the same rules
as the C function strftime.

54

When called without arguments, date returns a reasonable date and time representation that
depends on the host system and on the current locale (that is, os.date() is equivalent to
os.date("%c")).

os.difftime (t2, t1)
Returns the number of seconds from time t1 to time t2. In POSIX, Windows, and some other
systems, this value is exactly t2-t1.

os.execute ([command])
This function is equivalent to the C function system. It passes command to be executed by an
operating system shell. It returns a status code, which is system-dependent. If command is
absent, then it returns nonzero if a shell is available and zero otherwise.

os.exit ([code])
Calls the C function exit, with an optional code, to terminate the host program. The default value
for code is the success code.

os.getenv (varname)
Returns the value of the process environment variable varname, or nil if the variable is not
defined.

os.remove (filename)
Deletes the file or directory with the given name. Directories must be empty to be removed. If
this function fails, it returns nil, plus a string describing the error.

os.rename (oldname, newname)
Renames file or directory named oldname to newname. If this function fails, it returns nil, plus a
string describing the error.

os.time ([table])
Returns the current time when called without arguments, or a time representing the date and time
specified by the given table. This table must have fields year, month, and day, and may have
fields hour, min, sec, and isdst (for a description of these fields, see the os.date function).
The returned value is a number, whose meaning depends on your system. In POSIX, Windows,
and some other systems, this number counts the number of seconds since some given start time
(the "epoch"). In other systems, the meaning is not specified, and the number returned by time
can be used only as an argument to date and difftime.

os.tmpname ()
Returns a string with a file name that can be used for a temporary file. The file must be explicitly
opened before its use and explicitly removed when no longer needed. On some systems
(POSIX), this function also creates a file with that name, to avoid security risks. (Someone
else might create the file with wrong permissions in the time between getting the name and
creating the file.) You still have to open the file to use it and to remove it (even if you do not use
it).
When possible, you may prefer to use io.tmpfile, which automatically removes the file when the
program
ends.

55

1.1.28. Extended function library

toboolean(value)
Converts the given value to boolean using following rules: nil,
boolean false, 0, empty string, '0' string are treated as false, everything else as true

string.split(str, sep)
Splits the given string into chunks by the given separator.Returns Lua table.

knxlib.decodeia(indaddressa, indaddressb)
Converts binary-encoded individual address to Lua string. This function accepts either one or
two arguments (interpreted as two single bytes).

knxlib.decodega(groupaddressa, groupaddressb)
Converts binary-encoded group adress to Lua string. This function accepts either one or two
arguments (interpreted as two single bytes).

knxlib.encodega(groupaddress, separate)
Converts Lua string to binary-encoded group adress. Returns group address a single Lua number
when second argument is nil or false and two separate bytes otherwise.

ipairs (t)
Returns three values: an iterator function, the table t, and 0, so that the construction

for i,v in ipairs(t) do body end

will iterate over the pairs (1,t[1]), (2,t[2]), · · · , up to the first integer key absent from the table.

next (table [, index])
Allows a program to traverse all fields of a table. Its first argument is a table and its second
argument is an index in this table. next returns the next index of the table and its associated
value. When called with nil as its second argument, next returns an initial index and its
associated value. When called with the last index, or with nil in an empty table, next returns nil.
If the second argument is absent, then it is interpreted as nil. In particular, you can use next(t) to
check whether a table is empty. The order in which the indices are enumerated is not specified,
even for numeric indices. (To traverse a table in numeric order, use a numerical for or the ipairs
function.) The behavior of next is undefined if, during the traversal, you assign any value to a
non-existent field in the table. You may however modify existing fields. In particular, you may
clear existing fields.

pairs (t)
Returns three values: the next function, the table t, and nil, so that the construction

 for k,v in pairs(t) do body end

will iterate over all key–value pairs of table t.

tonumber (e [, base])
Tries to convert its argument to a number. If the argument is already a number or a string
convertible to a number, then tonumber returns this number; otherwise, it returns nil.

56

An optional argument specifies the base to interpret the numeral. The base may be any integer
between 2 and 36, inclusive. In bases above 10, the letter 'A' (in either upper or lower case)
represents 10, 'B' represents 11, and so forth, with 'Z' representing 35. In base 10 (the default),
the number can have a decimal part, as well as an optional exponent part. In other bases, only
unsigned integers are accepted.

tostring (e)
Receives an argument of any type and converts it to a string in a reasonable format. For complete
control of how numbers are converted, use string.format.
If the metatable of e has a "__tostring" field, then tostring calls the corresponding value with e as
argument, and uses the result of the call as its result.

type (v)
Returns the type of its only argument, coded as a string. The possible results of this function are
"nil" (a string, not the value nil), "number", "string", "boolean", "table", "function", "thread", and
"userdata".

1.1.29. User libraries

User libraries usually contain user defined functions which are later called from other scripts.

Secure the code

There is an option keep source available for user libraries. Once disabled, the code is compiled in
the binary form and can’t be seen for further editing. If this option is enabled, the source code is
seen in the editor.

57

Include the library in the scripts

To use functions defined in user library, they should be included in the beginning of the script,
for example, user library with the name ‘test’ should be included like this:

require('user.test')

1.1.30. Common functions

Common functions contains library of globally used functions. They can be called from any
script, any time, without special including like with user libraries. Functions like sunrise/sunset,
Email are included by default in Common functions.

1.1.31. Start-up (init) script

Init script is used for initialization on specific system or bus values on system start. Init script is
run each time after system is restarted for some reason.

1.1.32. Tools

Export helpers – export scripting helpers
Import helpers – import scripting helpers
Restore helpers – restore default scripting helpers
Backup user scripts –
Restore from archive –

• Remove existing scripts and import from backup

• Append keeping existing (s) scripts

Print script listings – shows all scripts with codes in list format sorted by Categ

58

export scripting helpers
import scripting helpers
restore default scripting helpers

 backup all scripts in *.gz file
– restore script from archive (*.gz) file with two possibilities:

Remove existing scripts and import from backup

Append keeping existing (s) scripts

shows all scripts with codes in list format sorted by Categ

restore script from archive (*.gz) file with two possibilities:

shows all scripts with codes in list format sorted by Categories.

59

1.2. Objects

List of KNX network objects appears in Objects menu. The object appears in the list by way of:

• sniffing the bus for telegrams from unknown group addresses (if enabled in Utilities)

• adding manually

• importing ESF file (in Utilities)

1.2.1. Object parameters

To change the settings for existing or new objects, press on the specific list entry.

60

Object name – Name for the object
Group address – Group address of this object
Data type – KNX data type for the object. This has to be set once the LM sniffs the new
object for proper work.
Log – enable logging for this object. Logs will appear in Objects logs menu.
Exportt – Make object visible by remote XML requests and in BACnet network (if KNX
– BACnet gateway functionality is used)
Poll interval (seconds) – perform automatic object read after some time interval
Tags – assign this object to some tag which can be later used in writing scripts, for
example, All_lights_first_floor.
Current value– Current value of the object
Object comments – Comment for the object

There is a possibility to sort the objects by one of the following – Name, Group address, Data
type, Current value, Tags, Comments

1.2.2. Object visualization parameters

By pressing on the button of the corresponding object you can set specific visualization
parameters for this type of object.

1 bit

• Control type – type of the visual control element

o Toggle
o Checkbox

4 bit (3 bit controlled)

61

• Step size – step size for example for blinds control
2 bit (1 bit controlled), 1 byte unsigned integer (scale), 1 byte signed integer, 2 byte unsigned
integer, 2 byte signed integer, 2 byte floating point (temperature), 4 byte unsigned integer, 4 byte
signed integer, 4 byte floating point

• Control type – type of the visual control element
o Slider

o Direct input / Step +/-

• Minimum value

• Maximum value

1.2.3. Change the object state

In the object list, by pressing on the button, you can change the state of the object.
The appearance of the New value depends on what visualization parameters are set for specific
object.

62

1.2.4. Object control bar

Add new object – Manually add new object to the list
Auto update enabled –Specifies either the object list is updated automatically or not
Clear – Clear the list of group addresses
Next/Previous page – move to next or previous page
Refresh – refresh the object list

1.2.5. Filter objects

On the left side of the object list there is filtering possible. To perform the filtering type the
name, group address, tag or specify the data type of the object and press on Filter button.

1.3. Object logs

Object historical telegrams are available in Object logs. Once logging is enabled for object, all
it’s further history will be logged.

63

Filtering is available when there is a need to find specific period information

Start date – start date and time for log filtering
End date – start date and time for log filtering
Name or group address – specific name or group address of object
Value – specific object value
Source address – specific source address

You can clear all logs by pressing on Clear button.

1.3.1. Export logs

Example

Once an hour, make CSV file with all objects logs and send to external FTP server with IP
192.168.1.11, login ‘ftplogin‘, password ‘ftppassword‘.

• In Scripting -> Scheduled add the script which will run once an hour

64

• Add the following code in Script editor for this particular script.

1. require('socket.ftp')

2.

3. -- ftp file

4. ftpfile=string.format('ftp://ftplogin:ftppassword@192.168.1.11/%s.csv', os.date('%Y-

%m-%d_%H-%M'))

5. -- get past hour data (3600 seconds)

6. logtime=os.time() - 60*60

7.

8. -- list of objects by id

9. objects ={}

10.

11. -- objects with logging enabled

12. query ='SELECT address, datatype, name FROM objects WHERE disablelog=0'

13. for _, object inipairs(db:getall(query))do

14. objects[tonumber(object.address)]={

15. datatype=tonumber(object.datatype),

16. name =tostring(object.name or''),

17. }

18. end

19.

20. -- csv buffer

21. buffer ={'"date","address","name","value"'}

22.

23. -- get object logs

24. query='SELECT src, address, datahex, logtime, eventtype FROM objectlog WHERE

logtime>= ? ORDER BY id DESC'

25. for _, row inipairs(db:getall(query, logtime))do

26. object = objects[tonumber(row.address)]

27.

65

28. -- found matching object and event type is group write

29. if object androw.eventtype=='write'then

30. datatype=object.datatype

31.

32. -- check that object datatype is set

33. ifdatatypethen

34. -- decode data

35. data =knxdatatype.decode(row.datahex, datatype)

36.

37. -- remove null chars from char/string datatype

38. ifdatatype==dt.charordatatype==dt.stringthen

39. data =data:gsub('%z+', '')

40. -- date to DD.MM.YYYY

41. elseifdatatype==dt.datethen

42. data =string.format('%.2d.%.2d.%.2d', data.day, data.month, data.year)

43. -- time to HH:MM:SS

44. elseifdatatype==dt.timethen

45. data =string.format('%.2d:%.2d:%.2d', data.hour, data.minute,

data.second)

46. end

47. else

48. data =''

49. end

50.

51. -- format csv row

52. logdate=os.date('%Y.%m.%d %H:%M:%S', row.logtime)

53. csv=string.format('%q,%q,%q,%q', logdate, knxlib.decodega(row.address),

object.name, tostring(data))

54.

55. -- add to buffer

56. table.insert(buffer, csv)

57. end

58. end

59.

60. -- upload to ftp only when there's data in buffer

61. if #buffer > 1 then

62. result, err =socket.ftp.put(ftpfile, table.concat(buffer, '\r\n'))

63. end

64.

65. -- error while uploading

66. if err then

67. alert('FTP upload failed: %s', err)

68. end

66

1.4. Schedulers

Schedulers contain administration of user mode schedulers. Schedulers allow for end user to
control KNX group address values based on the date or day of the week.

1.4.1. Add new scheduler

Object – the object group address which will be controlled by scheduler
Active – define this scheduler as active or not
Name – name of the scheduler
Start date – start date of the scheduler
End date – end date of the scheduler

67

1.4.2. Scheduler events

Event can be added both in administrator interface as well as by end user in the
special User mode schedulers interface.

Active – define the event active or not
Value – value to send to the group address when the event will be triggered
Start time – start time for the event
Days of the week – days of the week when the event will be triggered.
 Hol – holidays which are defined in Holidays tab

1.4.3. Scheduler holidays

Once the event will be marked to run in Hol, Holiday entries will be activated.

68

Name – the name of the holiday entry
Date – date of the holiday

1.5. Trend logs

Trends logs are administration of user mode trends, used to see historical object graphical values,
compare with other period values.

1.5.1. Add new trend log

Object – choose from list of object the one to make trends for
Name – name of the trend
Log type [Counter, Absolute value] – type of the log. Counter type is used to count the
date, Absolute value – saves the actual readings
1 minute data – average value of 1 minute for specific time interval data will be shown
on the trend. E.g. if 1 hour – trend step will be 1 hour with average 60 readings data
Hourly data – average value of hourly data for specific time interval
Daily data – average value of daily data for specific time interval

69

Monthly data – average value of monthly data for specific time interval

Note! One trend data point reading takes 8 bytes of flash memory. E.g. reading some
value once in every 10 minutes, will consume ~0.4MB of flash each year.

1.6. Visualization structure

In Vis.structure menu the structure of the visualization is defined and visualization backgrounds
are uploaded.

By default there is Layouts/Widgets level added, which is used as template for other floors if
necessary. To add a new level/building, press “Add new level” button.

Once a new level is added, you can add second level or upload floor pictures related to this

particular building. To add a new entry, click on the green icon , to delete a specific entry

press on the red icon .

70

Plan name – name for the plan
Layout – layout for this specific plan. All object from Layout will be duplicated on this
particular plan including background color and plan image if they are not defined
separately for this specific plan
Usermode visualization [Show, Show and make default, Hide] – visibility for this
particular plan in Usermode visualization
Touch visualization [Show, Show and make default, Hide] – visibility for this
particular plan in Touch visualization
Background color – choose background color of the plan
Repeat background image – either to show the image once or repeat it and fill the whole
plan
Sort order – sort order for the plan, depends who this particular plan will be located
among other in a specific level
Admin only access – enable admin only access for this floor

To add a background image press on the icon, the following window appears:

Any of BMP, GIF, JPEG or PNG image files are supported to upload.
In case you want to delete already uploaded image for specific floor, leave the upload field
blank.

You can duplicate the plan with all its objects and settings by pressing on icon.

71

1.7. Visualization

After the building and floor structure is defined in Vis.structure tab, it is visualized in
Visualization tab. Controlled and monitored objects can be added and managed in this section.

Both side bars can be minimized by pressing on icon making the map more visible especially
on small displays.

1.7.1. Plan editor

Plan editor is located on the right side of the visualization map. By clicking on Unlock current

plan for editing button, the following main menus appear for configuration:

Object – new object to be added to the map

72

Plan link – linking several floors with special icons
Camera – IP web camera integration into visualization
Graph – Real-time graph to monitor value of scale-type objects
Text Label – text label to put on visualization
Image – Add specific image on the visualization
Gauge – Metering gauge

On the left side of the plan Vertical guide and Horizontal guide fields appears, once the plan
editor is unlocked. This is used to see guidelines for adapting specific plan to specific device
resolution.

1.7.2. Object

Main object – list of existing group addresses on KNX/EIB bus, the ones available for
configuration in Objects tab
Status object – list of status objects on KNX/EIB bus
Custom name – Name for the object
Read-only – the object is read-only, no write permission
Hide in touch– do not show this object in Touch Visualization

Sort order– sort number for touch visualization
Hide background– Hide icon background
Send fixed value– Allows to send specific value to the bus each time the object is pressed
Display mode [icon and value; icon; value] – how to display the object
Default Icon– Default icon of scale-type objects
On icon – On state icon for binary-type objects

Off icon – Off state icon for binary-type objects

73

For scale-type objects additional button appears while specifying parameters – Additional icons.

It’s possible to define different icons for different object values in the window.

Once the object parameters are defined, press Add to plan button and newly created object will
appear. You can move the object to the location it will be located. Note that while being in
editing mode, the object will not work. When all necessary objects are added, press Save and

reload plan button so the objects starts functioning.

You can edit each added object when clicking on it while in Editing mode.

1.7.3. Plan link

In order to make visualization more convenient, there are floor links integrated. You can add
icons or text on the map, which links to other floors.

Plan – Linked plan name
Custom name – name for the link
Hide background– Hide icon background
Icon – Icon which will be showed in visualization (if chosen, no further parameters are
available)
Font size – size of font

74

Text style – text style – bold, italic, underscore
Custom font – font name
Font color – font color

Once the floor link parameters are defined, press Add to plan button and newly created object
will appear. You can move the object to the location it will be located. Note that while being in
editing mode, the object will not work. Press on Save and reload plan button so the objects starts
functioning.

1.7.4. Camera

Logic Machine supports third party IP web camera integration into its visualization.

Source url – source address of the video stream
Width – sub-window width for displaying of picture
Height– sub-window height for displaying of picture
Custom name – name for the object
Auto open window – automatically open video window
Hide background– hide icon background
Sort order – order cameras for touch visualization

Note! If IP camera requires user name and password, enter the url in form
http://USER:PASSWORD@IP

Once the camera parameters are defined, press Add to plan button and newly created object will
appear in look of video camera. You can move the object to the location it will be located. Note
that while being in editing mode, the object will not work. Press on Save and reload plan button
so the objects starts functioning. By pressing on video camera, a new sub-window appears with a
picture from your IP web camera. The window can be freely moved to other location so not to
cover other visualization objects.

75

1.7.5. Graph

Real-time graphs can be integrated into visualization system to monitor the current and old value
of scale-type objects. Make sure logging is enabled for the object in Object tab which values is
planned to be shown in the graph.

Data object – group address of the object
Custom name – name of the object
Icon– icon to launch the graph
Width – sub-window width for displaying the graph
Height– sub-window height for displaying the graph
Number of points – number of data points to show in the graph
Auto open window – graph window is automatically opened
Hide background – hide icon background

76

Once the graph parameters are defined, press Add to plan button and newly created object will
appear. You can move the object to the location it will be located. Note that while being in
editing mode, the object will not work. Press on Save and reload plan button so the objects starts
functioning.

1.7.6. Text Label

Text labels can be added and moved across the visualization map.

Text – label text
Font size – label font size
Text style – style of the text – bold, italic, underscored
Custom font – font name
Font color– label font color

77

Once the label parameters are defined, press Add to plan button and newly created object will
appear on the map. You can move the object to the location it will be located. Press on Save and

reload plan button so the objects starts functioning.

1.7.7. Image

Image section allows adding images from the internet into the visualization map. Useful for
example, to grab dynamic weather cast images.

Source url – Source URL of the image
Width – width of the image
Height – height of the image
External link – external link URL when pressing on the image

Once the image parameters are defined, press Add to plan button and newly created object will
appear on the map. You can move the object to the location it will be located. Press on Save and

reload plan button so the objects starts functioning.

1.7.8. Gauge

Gauge allows visualizing and changing object value in the gauge.

Data object – KNX group address
Size – size of the gauge
Custom name – custom name for the object
Read only – make the gauge read only

78

Once the gauge parameters are defined, press Add to plan button and newly created object will
appear on the map. You can move the object to the location it will be located. Press on Save and

reload plan button so the objects starts functioning.

79

1.8. Visualization icons

The list of predefined icons is available in Visualization icons tab.

Press on Add new icon button to add a new entry. The system accepts any size icons. GIF is also
supported.

Icon name – the name of the icon. It will appear in the list when adding new object. It
can contain letters, numbers, underscore and minus sign
Icon file – Icon file location

80

1.9. Utilities

There are following utilities in the tab available:

Import ESF file– imports ETS object file. It will be necessary to set correct data types for
some imported objects. Existing objects will not be overwritten. Objects with the same
name are considered duplicates and might not be imported

Reset object/clean-up – delete all objects from the Logic Machine, they disappear from
visualization aswell

Factory reset– delete all configuration and return to factory defaults

Date and time – data and time settings

81

Install updates – install Logic Machine update file *.lmu. Logic Machine will reboot
after successful update

Backup – backup all objects, logs, scripts, visualization.

Restore– restore configuration from backup

Configuration – by clicking on the arrow, KNX Connection and User Access settings can
be access. By clicking on the Configuration button, system general settings appear.

82

Interface language – interface language
List items per page –count of lines per page e.g. Objects, Object logs, Alerts etc.

Discover new objects– either KNX object sniffer is enabled. If yes, once triggered
all new objects will appear automatically in the Objects list
Object log size – max count of object logs
Default log policy– either to log status change for all objects or only for checked
objects
Alert log size – max count of alerts logged
Log size– max count of logs

Error log size– max count of errors logged
User mode fullscreen – defines if the User mode visualization is opened in
fullscreen mode, without side bars
Show alerts in user mode – once new Alerts is triggered it will pop-up in User

mode visualization

Note! Interface reload is required when changing "List items per page" or "Language" parameter

Note! If log size is changed to a smaller value, excess logs will be deleted on next auto clean-up
(every 15 minutes)

Note! Log policy only affects new objects, current per-object log settings are kept unchanged

Warning! Excessive object logging degrades Logic Machine performance

1.10. Alerts

In Alert tab a list of alert messages defined with alert function in scripts is located. The messages
are stored on the compact flash.

83

On the communication panel you can jump by pages
and reload the page.

Example

1. temperature = 25.3

2.

3. if temperature > 24 then

4. -- resulting message: 'Temperature levels are too high: 25.3'

5. alert('Temperature level is too high: %.1f', temperature)

6. end

1.11. Error log

Error messages from scripts are displayed in Error log tab.

1.12. Logs

Logs can be used for scripting code debugging. The log messages appear defined by log
function.

84

85

1.13. Help

Documentation for scripting syntaxes is displayed in Help tab.

86

2. User mode visualization

User mode visualization is mainly used to restrict permissions to the users of visualization. There
are no scripts, logs and utilities – just plain created visualization map.

There are three access levels: read, write, admin

Access level Login Password

Read-only visview visview

Write viscontrol viscontrol

Write+admin level visadmin visadmin

87

3. Touch visualization

Touch visualization is designed for iPhone/iPod/iPad/Android touch screen devices. All objects
which are added in Logic Machine configuration by default are visible in touch visualization (if
there is no Hide in touchoption enabled).

There are three access levels: read, write, admin

Access level Login Password

Read-only visview visview

Write viscontrol viscontrol

Write+admin level visadmin visadmin

The main window is Building view where you can choose which Floor from which Building to
control. Once you choose the floor, all objects which are assigned to it, are listed and can be
controlled.

Launching visualization on touch device (iPad in this case)

• Make sure your iPad is connected wirelessly to the Logic Machine (either through
separate access point or directly to Logic Machine’s USB WiFi adapter).

• In the browser enter Logic Machine’s IP (default 192.168.0.10).

• Click on the Touch Visualization icon.

• Save the application as permanent/shortcut in your iPad

88

4. Network configuration

Network configuration allows managing
well as do access control management, upgrade firmware, see network and system status
others.

Login

admin

4.1. Changing password

The login and password configuration window is located in

89

Network configuration

k configuration allows managing router functionality on KNX/EIB Logic Machine
well as do access control management, upgrade firmware, see network and system status

Password

admin

Changing password

password configuration window is located in System �GUI login

KNX/EIB Logic Machine as
well as do access control management, upgrade firmware, see network and system status and

GUI login.

90

Access control is separated in 3 tabs:

Admin/Remote – access parameters for Logic Machine, Network Configuration, RSS

and XML

Visualization – access parameters for Touch and User mode visualization

4.2. Packages

System � Packages shows the packages installed in the system. You can add new packaged by
pressing on +

91

4.3. Backup and restore

Backuping and restoring of the OS related and IP configuration is located in System � Backup

and restore

4.4. Upgrade firmware

System � Upgrade firmware is used to do a full upgrade of the system (both OS part as well as
Logic Machine part).

4.5. Reboot Logic Machine

You can restart the Logic Machine by executing System � Reboot command.

4.6. Shutdown Logic Machine

You can shutdown the Logic Machine by executing System � Shutdown command. It is
advisable to shutdown the system before plug out the power, because the database is saved
safely.

92

4.7. Interface configuration

Ethernet interface is listed in the first tab. There are possibilities to disable/enable or to take a
look at the traffic flow graph using special icons on the right side.

By clicking on the interface you get to the configuration.

Protocol– specific protocol used for addressing
 None– no protocol is used
 Static IP – static IP address. By default 192.168.0.10

93

 DHCP – use DHCP protocol to get IP configuration.
 Current IP– the IP address got from DHCP server. This field appears only if the

IP address is given otherwise it’s hidden.
 PPPoE – use PPP based protocol
 Username– username to connect to the PPPoE server
 Password – password
 Keepalive – keepalive timeout
 Dial on Demand– wheather to dial on demand
 PPTP server IP– PPPoE server IP address to make the connection to

Network mask – network mask. By default 255.255.255.0 (/24)
Gateway IP – gateway IP address
DNS server – DNS server IP address
MTU– maximum transmission unit, the largest size of the packet which could be passed in the
communication protocol. By default 1500

4.7.1. Ethernet interface data throughput graph

On the main window of the Ethernets tab, if you click on the button, a new window is
opened. It draws a real-time graph of the traffic flow passing the interface (both In and Out).
There is a possibility to switch the units of measurement – bytes/s or bytes/s.

94

4.8. Routing Table

System routing table is located in Network�Routes menu. The window is divided in two parts –
Static routes and Dynamic routes.

4.8.1. Dynamic routes

Interface – interface name
Destination– destination IP address
Network mask – network mask
Gateway – gateway IP address

4.8.2. Static routes

95

Interface – interface name
Destination– destination IP address
Network mask – network mask
Gateway – gateway IP address

4.9. ARP table

Address Resolution Protocol table is listed in Network � ARP table.

96

4.10. FTP server

You can enable access to FTP server of Logic Machine by enabling this service in Service �

FTP Server.

Server status – secure tunnel mode
Port – port of the service
Username – login name, ftp
Password – password, length 4-20 symbols

4.11. System monitoring

4.12. Firewall rules (upcoming)

Firewall configuration is located in Network � Firewall window. With firewall rules there is a
possibility to accept, drop or forward specific data packets. General Firewall settings are

accessible by clicking on icon.

97

Default policies can be changed for further operations as well as flood protection.

4.12.1. Zones

You can create separate firewall zones with respective policies. These zones are then used in
creating firewall rules and in forwarding (NAT).

Zone name – name of the zone
Input policy – packet policy going to this zone
Output policy – packet policy going from this zone
Forward policy – packet policy going through this zone
NAT– whether Network Address Translation is supported for the zone.

98

4.12.2. Rules

Rule type – Rule type
 Forward – Traffic will be forwarded to specific IP address/port
 Accept – Traffic will be accepted
 Drop – Traffic will be denied
Source zone– source zone name
Source IP – Source IP address
Source ports – Source ports. Could be specified in row separated with commas
Destination zone – Destination zone name
Dest. IP – Destination IP address
Dest. Ports – Destination ports. Could be specified in row separated with commas
Protocol– Protocol which is used
Both – Both TCP and UDP protocols will be catched
 TCP – TCP protocol will be catched
 UDP – UDP protocol will be catched

4.13. Quality of Service (QoS) settings (upcoming)

QoS settings ar located in Network � Quality of Service window.It’s possible to limit the
bandwidth going and coming to specific interface, IP or application, to make priorities for
specific traffic etc.

99

4.13.1. Interfaces

By clicking on the specific interface you can limit bandwidth for it and assign the interface to
specific QOS classes.

Download kbps – Download speed for the interface
Upload kbps – Upload speed for the interface
Add overhead – Add the information as overhead

Under QoS classes tab you can assign specific class to specific interface.

4.13.2. Classes

There are several default classes with respective configuration – Priority, Express, Normal, Bulk.
Other classes can be freely added.

100

Class name – name of the class
Priority– priority number
Avg rate – average bandwidth rate
Max rate –max bandwidth rate
Max pkt size –max packet size
Packet delay – packet delay

4.13.3. Rules

Specific IP, application, port, and class based rules can be added in Rules tab.

Class name – name of the predefined class
Rule type [classify / reclassify / default] – type of the rule
Source host – source IP address
Dest host – destination IP address
Port filter [Port list / Port range] – type of port filtering
Port list – list of port, comma separated
Port range – port range
Direction [Both / Inbound / Outbound] – direction
Proto [All / TCP / UDP / ICMP] – protocol
Application [All P2P traffic / No filter] – specific application based filtering

101

4.14. System status

General system status with CPU usage, Memory usage, Partition information can be seen in
Status �System status window.

102

4.15. Network status

Network overview of IP setting and transferred data can be seen in Status �Network status
window.

4.16. Network utilities

Ping and Traceroute utilities are located in Status �Network utilities window. Both IP address
and DNS names are accepted.

4.17. System log

Operating system log is available in Status � System log.

103

4.18. Running processes

System running processes can be seen in Status �Running processes window.

104

5. User mode schedulers

User mode schedulers contains user-friendly interface for end-user to manage scheduler tasks,
for example, specify thermostat values depending of the day of the week, time and holidays.

5.1. Events

Each scheduler is mapped to specific group address in administration panel (see section 1.4 of

this manual).

When adding the new task for specific scheduler you can specify day of the week, start time,
value to send to the object.

By clicking on Active button, specific even/task can be deactivated.

105

5.2. Holidays

In Holidays special days are specified which are then used adding new events.

Click on Add new holiday button to specify a holiday.

106

6. Trend logs

Trend logs are end user interface for trends (defined in administrator interface in section 1.5).

By clicking on the hidden blue menu you can change to different trends where each is mapped to
a specific KNX group address.

Current – Current trend is drawn in blue, you can choose either to show Day, Month or
Year view
Previous – previous time period, you can choose either to show Day, Month or Year view
Toggle previous – when enabled a yellow trend line appears showing Previous trend
above Current trend
Home – Logic Machine home screen.

107

Datapoints can be shown also in a way of table which can be later exported as CSV file.

108

7. Modbus RTU/TCP interconnection with LM2

Modbus RTU is supported over RS485 interface. Modbus TCP is supported over Ethernet port.
Modbus communication is done directly from scripts (usually resident script is used to read
Modbus value after some specific time interval and write them into KNX object).

Once script is added, you can add the code in the Script Editor. There are lots of predefined code
blocks in the Helpers.

7.1. Master functions

mb:setslave(slaveid)
Sets slave id to read/write data from/to

mb:readcoils(start, count)

mb:readdiscreteinputs(start, count)

mb:readregisters(start, count)

mb:readinputregisters(start, count)

Reads count registers/coils from the start address. Returns all values on success and nil, error
description on error

mb:writebits(start, v1, [v2, [v3, ...]])

mb:writeregisters(start, v1, [v2, [v3, ...]])
Writes values to registers/coils from the start address. Single write will be used when only one
value is supplied, multiple write otherwise. Returns all of values written on success and nil, error

109

description on error

mb:reportslaveid()

 Reads slave internal data. Returns values on success and nil, error description on error.

7.2. Visualizing Modbus objects

Use grp.write to assign Modbus object to KNX object and then use this new KNX object in the
visualization.

7.3. Usage example (Modbus TCP)

Task: read three registers from Modbus TCP device and write the result in Alerts.

1. -- initmodbus on first script execution

2. ifnotmbthen

3. require('luamodbus')

4. mb=luamodbus.tcp()

5. end

6.

7. -- prepare connection to given ip and port

8. mb:open('192.168.1.100', 1502)

9.

10. -- open connection and check the result

11. ifmb:connect()then

12. -- read 3 input registers, function returns 3 variables

13. local x, y, z =mb:readinputregisters(1, 3)

14.

15. -- first variable will be nill if read failed

16. if x then

17. local message =string.format('1: %d; 2: %d; 3: %d', x, y, z)

18. alert(message)

19. end

20.

21. -- end session

22. mb:close()

23. else

24. alert('connection failed')

25. end

7.4. Usage example (Modbus RTU)

110

Task: read two parameters (3-phase system voltage, 3-phase system current) from Modbus
Multimeter 32-bit registers and store the data in the KNX group addresses. Make sure to connect
LM2 with Modbus device correctly, RS485 A with -, RS485 B with +.

1. -- initmodbus on first script execution

2. ifnotmbthen

3. require('luamodbus')

4. mb=luamodbus.rtu()

5. mb:open('/dev/ttyS2', 9600, 'E', 8, 1, 'H')

6. mb:connect()

7. end

8.

9. -- sets slave ID to read/write data from/to

10. mb:setslave(20)

11.

12. -- read 3-phase system voltage from 32-bit register

13. r1, r2 =mb:readregisters(0x1000, 2)

14. result =bit.lshift(r1, 16) + r2

15. grp.write('5/5/1',result)

16.

17. -- read 3-phase system current from 32-bit register

18. r1, r2 =mb:readregisters(0x100E, 2)

19. result =bit.lshift(r1, 16) + r2

20. grp.write('5/5/2',result)

Some Modbus devices keep enocded values in registers, you need to encode them first from
HEX to use in the further scripts.For example, value = 0x0cba after executing the below
commands will give temperature equal to 24.2

1. hex =lmcore.inttohex(value, 2)

2. temp =knxdatatype.decode(hex, dt.float16)

Here is an example of function which is doing byte shift:

1. -- get single bit from a numeric value

2. function getbit(value, bnum)

3. value = tonumber(value) or 0

4. value = bit.rshift(value, bnum)

5. return bit.band(value, 1)

6. end

7.

8.

9. getbit(value, 0) -- first bit, and so on

111

7.5. Modbus Slave examples

Add the following code to Common functions

1. -- modbus proxy

2. mbproxy = {

3. -- supported function list

4. functions = {

5. 'readdo',

6. 'readcoils',

7. 'readdi',

8. 'readdiscreteinputs',

9. 'readao',

10. 'readregisters',

11. 'readai',

12. 'readinputregisters',

13. 'writebits',

14. 'writemultiplebits',

15. 'writeregisters',

16. 'writemultipleregisters',

17. 'reportslaveid',

18. 'getcoils',

19. 'getdiscreteinputs',

20. 'getinputregisters',

21. 'getregisters',

22. 'setcoils',

23. 'setdiscreteinputs',

24. 'setinputregisters',

25. 'setregisters',

26. },

27. -- new connecton init

28. new = function()

29. require('rpc')

30. local mb = setmetatable({}, { __index = mbproxy })

31.

32. mb.slaveid = 0

33. mb.rpc = rpc.client('127.0.0.1', 28002, 'mbproxy')

34.

35. for _, fn in ipairs(mbproxy.functions) do

36. mb[fn] = function(self, ...)

37. return mb:request(fn, ...)

38. end

39. end

40.

41. return mb

42. end

43. }

44.

45. -- set local slave id

112

46. function mbproxy:setslave(slaveid)

47. self.slaveid = slaveid

48. end

49.

50. -- send rpc request for a spefic function

51. function mbproxy:request(fn, ...)

52. local res, err = self.rpc:request({

53. fn = fn,

54. params = { ... },

55. slaveid = self.slaveid or 0,

56. })

57.

58. -- request error

59. if err then

60. return nil, err

61. -- request ok

62. else

63. -- reply with an error

64. if res[1] == nil then

65. return nil, res[2]

66. -- normal reply

67. else

68. return unpack(res)

69. end

70. end

71. end

Handler (resident script with 0 delay) configuration

1. mb:open('/dev/ttyS2', 38400, 'E', 8, 1, 'H')
 set baudrate and other serial port parameters

2. mb:setslave(10)
 set slave device id

3. mb:setmapping(10, 10, 10, 10)

 set number coils, discrete inputs, holding registers and input registers

4. mb:setwritecoilcb(function(coil, value)...

 callback function which is executed for each coil write

5. mb:setwriteregistercb(function(coil, value)...
 callback function which is executed for each register write

113

Handler script example

1. -- modbus init

2. if not mb then

3. require('luamodbus')

4. mb = luamodbus.rtu()

5. mb:open('/dev/ttyS2', 38400, 'E', 8, 1, 'H')

6. mb:connect()

7.

8. -- slave id

9. mb:setslave(10)

10.

11. -- init slave storage for coils, discrete inputs, holding registers and input registers

12. mb:setmapping(10, 10, 10, 10)

13.

14. -- coil write callback

15. mb:setwritecoilcb(function(coil, value)

16. if coil == 0 then

17. grp.write('1/1/1', value, dt.bool)

18. else

19. alert('coil: %d = %s', coil, tostring(value))

20. end

21. end)

22.

23. -- register write callback

24. mb:setwriteregistercb(function(register, value)

25. if register == 0 then

26. -- send value limited to 0..100

27. grp.write('4/1/5', math.min(100, value), dt.scale)

28. else

29. alert('register: %d = %d', register, value)

30. end

31. end)

32. end

33.

34. -- server part init

35. if not server then

36. require('rpc')

37.

38. -- incoming data handler

39. local handler = function(request)

40. local fn, res

41.

42. fn = tostring(request.fn)

43.

44. if not mb[fn] then

45. return { nil, 'unknown function ' .. fn }

114

46. end

47.

48. if type(request.params) == 'table' then

49. table.insert(request.params, 1, mb)

50. res = { mb[fn](unpack(request.params)) }

51. else

52. res = { mb[fn](mb) }

53. end

54.

55. return res

56. end

57.

58. server = rpc.server('127.0.0.1', 28002, 'mbproxy', handler, 0.01)

59. end

60.

61. mb:handleslave()

62. server:step()

Example: event script which changes modbus slave coil (address 0)

Must be mapped to a group address with binary value.

1. value = event.getvalue()

2. mb = mbproxy.new()

3. mb:setcoils(0, value)

Example: event script which changes modbus slave register (address 5)

Must be mapped to a group address with scaling (0..100) value

1. value = event.getvalue()

2. mb = mbproxy.new()

3. mb:setregisters(5, value)

7.6. Modbus working with several slaves on the same RS485 connection

The example was designed to interconnect with 16 VRF system in one line through 1 Logic
Machine2.

Resident script

-- modbus init

if not mb then

 require('luamodbus')

 mb = luamodbus.rtu()

 mb:open('/dev/ttyS2', 9600, 'E', 8, 1, 'H')

 mb:connect()

 mb:setslave(1)

 -- a/c list

 aclist = {

115

 -- a/c: 0, id: 1

 { addrstat = '8/4/0', addrmode = '8/5/0', addrspeed = '8/6/0', addrtemp = '8/7/0' },

 -- a/c: 1, id: 2
 { addrstat = '8/4/1', addrmode = '8/5/1', addrspeed = '8/6/1', addrtemp = '8/7/1' },

 }

 -- read 8 bits and convert to single byte
 function readbyte(offset)

 local bits = mb:readdiscreteinputs(offset, 8)
 local result = 0

 for i = 1, 8 do

 if bits[i] then

 result = result + bit.lshift(1, i - 1)

 end

 end

 return result

 end

 -- write single byte and convert to 8 bits

 function writebyte(offset, byte)

 local bits = {}

 for i = 1, 8 do
 table.insert(bits, bit.band(1, bit.rshift(byte, i - 1)) == 1)

 end

 mb:writebits(offset, unpack(bits))
 end

end

-- local udp server init
if not server then

 require('socket')

 server = socket.udp()

 server:setsockname('127.0.0.1', 28016)

 server:settimeout(1)

 -- remote command handler

 function cmd(data)
 local id, cmd, value, ac, addr, offset

 -- command format id:cmd[:value]

 id, cmd, value = unpack(data:split(':'))

 id = tonumber(id) or 0

 -- check if ac is valid

 ac = aclist[id]

 if not ac then

 return

 end

 -- default offset

 offset = (id - 1) * 152

 -- on/off
 if cmd == 'ON' or cmd == 'OFF' then

 mb:writebits(offset, cmd == 'ON')
 -- temperature settings

 elseif cmd == 'TEMP' then
 value = tonumber(value)

 -- value ok

 if value then
 -- calculate register offset and write encoded value

 offset = (id - 1) * 156

 mb:writeregisters(offset, encodetemp(value))

 end

 -- operation mode

 elseif cmd == 'MODE' then

 value = tonumber(value)

 -- verify bounds

 if 0 <= value and value <= 3 then

 -- convert to a/c value and write

 writebyte(offset + 8, value + 1)

 end

 -- fan speed

 elseif cmd == 'SPEED' then

 value = tonumber(value)

 -- verify bounds

 if 0 <= value and value <= 3 then

 -- convert to a/c value and write

 writebyte(offset + 16, value + 2)

 end

 end

 end

end

-- read current status for each a/c unit
for id, ac in ipairs(aclist) do

 local stat, mode, temp, speed, offset

 -- address offset
 offset = (id - 1) * 152

 -- on/off status

 stat = mb:readdiscreteinputs(offset)

 if type(stat) == 'boolean' and ac.stat ~= stat then

116

 ac.stat = stat

 grp.write(ac.addrstat, stat, dt.bool)

 end

 -- operation mode
 mode = readbyte(offset + 8)

 if type(mode) == 'number' and ac.mode ~= mode then
 ac.mode = mode

 -- send proper value to knx
 if 1 <= mode && mode <= 5 then

 grp.write(ac.addrmode, mode - 1, dt.uint8)
 end

 end

 -- fan speed

 speed = readbyte(offset + 16)

 if type(speed) == 'number' and ac.speed ~= speed then

 ac.speed = speed

 -- send proper value to knx

 if 2 <= mode && mode <= 7 then

 grp.write(ac.addrspeed, speed - 2, dt.uint8)

 end

 end

 -- temperature
 offset = (id - 1) * 156 + 1

 temp = readinputregisters(offset)
 if type(temp) == 'number' and ac.temp ~= temp then

 ac.temp = temp
 grp.write(ac.addrtemp, decodetemp(temp), dt.float16)

 end
end

-- read command from client

local data = server:receive()

if data then

 cmd(data)

end

Common function program

function decodetemp(value)

 local hex = lmcore.inttohex(value, 2)

 return knxdatatype.decode(hex, dt.float16)

end

function encodetemp(value)

 local hex = knxdatatype.encode(value, dt.float16).datahex

 return tonumber(hex, 16)

end

-- send request to modbus resident

function accmd(id, cmd, value)

 local request, client

 require('socket')

 -- check if value has been passed
 value = value and tonumber(value)

 -- create request string

 request = string.format('%d:%s', id, cmd:upper())
 if value then

 request = string.format('%s:%s', request, value)

 end

 -- send udp packet

 socket.udp():sendto(request, '127.0.0.1', 28016)

end

Example: on/off VRF system

value = knxdatatype.decode(event.datahex, dt.bool)

accmd(1, value and 'ON' or 'OFF')

Example: set mode of VRF system
value = knxdatatype.decode(event.datahex, dt.uint8)

accmd(1, 'MODE', value)

Example: set the speed

value = knxdatatype.decode(event.datahex, dt.uint8)

accmd(1, 'SPEED', value)

Example: set the temperature

value = knxdatatype.decode(event.datahex, dt.float16)
accmd(1, 'TEMP', value)

117

6. BACnetIP interconnection with LM2

You can configureBACnet Device ID and Password (used for remote device reloading) in Network

Configuration ���� Network ����BACnet.

To make KNX/EIB objects BACnet readable/writable, mark necessary objects in Logic Machine
as “Export object”.Binary objects will appear as Binary Values, other numeric values will appear
as Analog Values. Other types are not currently supported. KNX bus writes changes the
Relinquish Default property

118

Note!BACnet service restart and Reinitialize Device requests will reload all objects, priority
array will be reset to NULL.

119

7. EnOcean interconnection with LM2

Logic Machine 2 supports bi-directional communication with EnOcean devices.

7.1. EnOcean interfaces

EnOcean to USB gateway (or any EnOcean IP gateway) once connected to Logic Machine 2
after reboot appears in Enocean�Interfaces tab.

7.2. EnOceanto KNX mapping

All telegrams received from EnOcean devices connected to EnOcean USB gateway appears in
Enocean�KNX section.

Once some specific device has to be mapped to KNX, the corresponding row has to be clicked
and profile has to be chosen. There are all main profiles predefined in the list.

120

Once the device profile is set, you can map functionality of the specific device to KNX group
addresses by clicking on Mapping icon.

When EnOcean gateway received telegram from specific device, the respective row gets light
green.

Respective KNX group addresses get updated with the new values.

121

7.3. KNX to EnOcean mapping

You should click on Add new device button to add EnOcean device which will be communicated
from specific KNX object.

Once the device is added, you should pair it with specific device in EnOcean network, press
Tech-in button.
Note!EnOcean device should be set in learning mode in order to pair it successfully.

122

Further this device can be mapped with specific KNX addresses.
When KNX object value will be updated, the telegram will be sent to respective EnOcean
device.

123

8. DMX interconnection with LM2

DMX protocol support is realized upon RS485 serial port.

Usage

d =DMX:init(parameters)

d:run()

Parameters

• channels – (optional, defaults to 3) number of DMX channels to use

• resolution – (optional, defaults to 20) number of DMX updates per second. Larger
value gives smoother transitions, but increases CPU usage

• transition – (optional, defaults to 2) soft transition time in seconds

• port– (optional) RS-485 port name, usually you don’t have to change this value

Common function

The following program has to be added in Common functions library.

DMX = {
 -- default params

 defaults = {
 -- storage key

 skey = 'dmx_chan_',
 -- RS-485 port

 port = '/dev/ttyS2',
 -- number of calls per second

 resolution = 20,
 -- total number of channels to use

 channels = 3,

 -- transition time in seconds, does not include DMX transfer time

 transition = 2,

 },

 -- value setter

 set = function(i, v)

 -- validate channel number

 if type(i) == 'number' and i >= 1 and i <= 512 then

 -- validate channel value

 if type(v) == 'number' and v >= 0 and v <= 255 then

 storage.set(DMX.defaults.skey .. i, v)

 end

 end
 end

}

-- DMX init, returns new DMX object

function DMX:init(params)

 require('luadmx')

 local n = setmetatable({}, { __index = DMX })

 local k, v

 -- set user parameters
 n.params = params

 -- copy parameters that are set by user

 for k, v in pairs(DMX.defaults) do
 if n.params[k] == nil then

 n.params[k] = v
 end

 end

 n:reset()

 return n

end

function DMX:reset()

 local err, chan

 self.dm, err = luadmx.open(self.params.port)

 -- error while opening

 if err then

 os.sleep(1)

 error(err)

 end

124

 -- set channel count

 self.dm:setcount(self.params.channels)

 -- number of transaction ticks

 self.ticks = math.max(1, self.params.transition * self.params.resolution)

 -- calculate sleep time
 self.sleep = 1 / self.params.resolution

 -- reset channel map

 self.channels = {}

 -- fill channel map

 for chan = 1, self.params.channels do

 self.channels[chan] = { current = 0, target = 0, ticks = 0 }

 -- turn off by default

 storage.set(self.params.skey .. chan, 0)

 self.dm:setchannel(chan, 0)

 end

end

-- get new values

function DMX:getvalues()

 local chan, val

 -- check for new values for each channel
 for chan = 1, self.params.channels do

 val = storage.get(self.params.skey .. chan)

 -- target value differs, set transcation
 if val ~= self.channels[chan].target then

 self.channels[chan].target = val
 self.channels[chan].delta = (self.channels[chan].target - self.channels[chan].current) / self.ticks

 self.channels[chan].ticks = self.ticks

 end

 end

end

-- main loop handler
function DMX:run()

 local i, bs, bm, as, am, delta
 local res = self.params.resolution

 if not self.calibrated then

 bs, bm = os.microtime()

 end

 self:getvalues()

 -- transition loop

 for i = 1, res do

 self:step()

 self.dm:send()

 -- wait until next step

 os.sleep(self.sleep)

 end

 -- calibrate delay loop to match 1 second
 if not self.calibrated then

 as, am = os.microtime()
 delta = (as - bs) + (am - bm) / 1000000

 if delta > 1.05 then

 self.sleep = self.sleep - math.max(10, self.sleep / res)
 else

 self.calibrated = true

 end

 end

end

-- single transition step

function DMX:step()

 local chan, t

 -- transition for each channel

 for chan = 1, self.params.channels do

 t = self.channels[chan].ticks

 -- transition is active

 if t > 0 then

 t = t - 1

 self.channels[chan].current = self.channels[chan].target - self.channels[chan].delta * t

 self.channels[chan].ticks = t

 self.dm:setchannel(chan, self.channels[chan].current)

 end

 end

end

DMX handler programs

DMX handler should be placed inside a resident script. Sleep time interval must be set to 0.

125

Once the resident script is added we can add the program source in Script Editor

1. if not d then

2. d =DMX:init({

3. channels = 3,

4. transition = 2,

5. })

6. end

7.

8. d:run()

Setter (used in other scripts)

DMX.set(channel, value)

• channel– DMX channel number [1..512]

• value – DMX channel value [0..255]

8.1. Examples

Predefined scene example: The following example should be placed inside a resident script.
Sleep time defines scene keep time (at least 1 second).

1. ifnot scenes then

126

2. -- 3 channel scene

3. scenes ={

4. { 255, 0, 0 },

5. { 0, 255, 0 },

6. { 0, 0, 255 },

7. { 255, 255, 0 },

8. { 0, 255, 255 },

9. { 255, 0, 255 },

10. { 255, 255, 255 },

11. }

12.

13. current = 1

14. end

15.

16. -- set current scene values

17. scene = scenes[current]

18. fori, v inipairs(scene)do

19. DMX.set(i, v)

20. end

21.

22. -- switch to next scene

23. current = current + 1

24. if current > #scenes then

25. current = 1

26. end

Random scene example:The following example should be placed inside a resident script. Sleep
time defines scene keep time (at least 1 second).

1. -- number of steps to use, e.g. 3 steps = { 0, 127, 255 }

2. steps =5

3. -- number of channels to set

4. channels =3

5. -- first channel number

6. offset = 1

7.

8. fori= offset, channels do

9. v =math.random(0, (steps - 1))* 255 /(steps - 1)

10. DMX.set(i, math.floor(v))

11. end

127

9. 3Gmodem connection with LM2

Logic Machine 2 has standard 3G modem driver built-in (Huawei and other vendor support).
Currently this can be used for SMS notifications only – receiving and sending commands.
Further 3G router support will be added.

Command syntax:
 a. Write to bus:
 W ALIAS VALUE
 b. Read from bus:
 R ALIAS

On read request, script will reply with SMS message containing current value of selected object.

ALIAS can be:
 a. Group address (e.g. 1/1/1)
 b. Name (e.g. Obj1). If name contains spaces then it must be escaped usign double quotes (e.g.
"Room Temperature")

NOTE:
 a. Object data type and name must be set in Objects tab. Otherwise script won't be able to read
and write to object.
 b. Only ASCII symbols are accepted in the message.

9.1. Examples

Binary write (send the following SMS to switch kitchen lights on):

W 1/1/1 true

Scaling write (send the following SMS to set value 67% for red LED):

W LED1Red 67

Temperature (floating point) write (send the following SMS to make setpoint in the living room to 22.5 degrees):

W “Room Setpoint” 22.5

Read (send the following SMS to read the security panel value:

R 2/1/1

9.2. SMS handler program

Aresident script for SMS handler should be created with sleep interval 0 following code.

Note! Change white list telephone numbers and SIM card’s PIN code in the below script.

1. -- init

128

2. ifnot modem then

3. -- allowed numbers, SMS message from other number will be ignored

4. numbers ={'1234567890', '0123456789'}

5. -- replace 0000 with SIM pin number, or remove the line below if PIN check is disabled

6. pincode='0000'

7. -- modem communication port, ttyUSB2 for Huawei E173

8. comport ='ttyUSB2'

9. -- open serial port

10. modem =AT:init('/dev/' .. comport)

11. -- command parser

12. parser =function(cmd, sender)

13. local find, pos, name, mode, offset, value, jvalue, obj

14. cmd=cmd:trim()

15. mode =cmd:sub(1, 1):upper()

16. if mode =='W'or mode =='R'then

17. cmd=cmd:sub(3):trim()

18. -- parse object name/address

19. find =cmd:sub(1, 1)=='"'and'"'or' '

20. offset = find =='"'and 1 or0

21. -- pad with space when in read mode

22. if mode =='R'and find ==' 'then

23. cmd=cmd .. ' '

24. end

25. -- find name

26. pos=cmd:find(find, 1 + offset, true)

27. -- name end not found, stop

28. ifnotposthen

29. returnfalse

30. end

31. -- get name part

32. name =cmd:sub(1 + offset, pos - offset):trim()

33. if mode =='W'then

34. value =cmd:sub(pos + offset):trim()

35. ifnot value then

36. returnfalse

37. end

38. -- try decoding value

39. jvalue=json.pdecode(value)

40. value =jvalue ~=nilandjvalueor value

41. -- send to bus

42. grp.write(name, value)

43. -- read request

44. else

45. obj=grp.find(name)

46. -- send read request and wait for update

47. ifobjthen

48. obj:read()

49. os.sleep(1)

50. -- read new value

51. value =grp.getvalue(name)

129

52. -- got value, send response

53. if value ~=nilthen

54. jvalue=json.pencode(value)

55. if obj.name then

56. name =string.format('%s (%s)', obj.name, obj.address)

57. end

58. cmd=string.format('Value of %s is %s', name, jvalue)

59. modem:sendsms(sender, cmd)

60. end

61. end

62. end

63. end

64. end

65. -- incoming sms handler

66. handler =function(sms)

67. alert('incoming sms from %s (%s)', sms.sender, sms.data)

68. -- sms from known number, call parser

69. iftable.contains(numbers, sms.sender)then

70. parser(sms.data, sms.sender)

71. end

72. end

73. -- set sms handler

74. modem:setsmshandler(handler)

75. -- send pin if set

76. ifpincodethen

77. modem:send('AT+CPIN=' .. pincode)

78. end

79. -- set to pdu mode

80. modem:send('AT+CMGF=0')

81. -- enable sms notifications

82. modem:send('AT+CNMI=1,1,0,0,0')

83. alert('SMS handler started')

84. end

85. modem:run()

9.3. Send SMS messages to specific SIM numbers after group-read or

group-write is triggered

Task:Assume we have an Event-based script which triggers a program once group-read or group-
write is triggered for address 1/1/1. We want to send SMS to numbers 23335555 and 23335556
with 1/1/1 actual status.

1. require('socket')

2.

3. client =socket.udp()

4.

130

5. -- in the message field the number where SMS has to be send should be specified at the

beginning

6. localmsg='23335555 1/1/1 changes its value to: ' .. tonumber(event.datahex)

7. client:sendto(msg, '127.0.0.1', 12535)

8.

9. msg='23335556 1/1/1 changes its value to: ' .. tonumber(event.datahex)

10. client:sendto(msg, '127.0.0.1', 12535)

131

10. HDL protocol integration in Logic Machine 2

Note! Please contact Embedded Systems team to receive a special package to integrate HDL
support into your LM2. Once you have the file, add it in Network configuration -> System ->

Packages.

10.1. HDL function

Add HDL script in Scripting -> Tools -> User function library

1. HDL ={

2. -- destination ip

3. dstip='192.168.1.7',

4. -- packet constant data

5. magic ='HDLMIRACLE',

6. lcode=string.char(0xAA, 0xAA),

7. -- source device settings

8. srcsubnet=1,

9. srcdevice=254,

10. devicetype= 0xFFFE,

11. -- command types

12. cmd={

13. chanreg= 0x0031, -- single channel regulate

14. chanregreply= 0x0032, -- single channel regulate answerback

15. chanstat= 0x0033, -- read status of single channel targets

16. chanstatreply= 0x0034, -- single channel targets status answerback

17. }

18. }

19.

20. HDL.init=function()

21. require('json')

22. require('crc16')

23. require('socket')

24.

25. localip, chunk, chunks, data

26. -- read interface data

27. data =json.pdecode(io.readproc('if-json'))

28.

29. ifnot data ornot data.eth0 then

30. error('cannot get interface data')

31. end

32.

33. -- ip header

34. HDL.iphdr=''

35. -- broadcast address

36. HDL.bcast= data.eth0.bcast

37.

132

38. -- split ip address into chunks

39. chunks= data.eth0.inetaddr:split('.')

40.

41. -- add ip address chunks

42. fori= 1, 4 do

43. chunk =tonumber(chunks[i])

44. HDL.iphdr=HDL.iphdr ..string.char(chunk)

45. end

46. end

47.

48. HDL.decode=function(packet)

49. locallen, data, src, crc

50.

51. -- primary header

52. ifpacket:sub(5, 14) ~=HDL.magicthen

53. returnnil, 'magic'

54. end

55.

56. -- leading code

57. ifpacket:sub(15, 16) ~=HDL.lcodethen

58. returnnil, 'lcode'

59. end

60.

61. -- get data length and check against

62. len=packet:byte(17)

63. iflenandlen + 16 ~=packet:len()then

64. returnnil, 'len'

65. end

66.

67. -- get packet data and check crc

68. data =packet:sub(17, len + 14)

69. crc=packet:byte(len + 15)* 0x100 + packet:byte(len + 16)

70. if crc16(data) ~=crcthen

71. returnnil, 'crc'

72. end

73.

74. -- return parsed packet

Change HDL parameters in the function to correct ones

133

10.2. Usage example – HDL dimmer control

Task of this example is to change HDL dimmer value on specific KNX group address change.

• Add new object in Objects tab

• Add Event-based script which will monitor newly created object

• In Scripting Editor specify the following code for this script

1. local value =dpt.decode(event.datahex, dt.scale)

2. HDL.chanreg(1, 12, 1, value, 1)

HDL.chanreg function description

HDL.chanreg(dstsubnet, dstdevice, chan, value, delay)

Parameters:

• dstsubnet – device subnet

• dstdevice – device address

• chan – channel number (1..n)

• value – value (0..100, or true / false)

• delay – transition time or delay in seconds (0..65535), by default is 0

Test the program

If you change the value for object 4/1/1 in Objects menu with Set Value, it will automatically
change dimmer state in HDL network.

10.3. Usage example – HDL relay control

Task of this example is to change HDL dimmer value on specific KNX group address change.

• Add new object in Objects tab

• Add Event-based script which will monitor newly created object

• In Scripting Editor specify the following code for this script

134

1. local value =dpt.decode(event.datahex, dt.bool)

2. HDL.chanreg(1, 11, 1, value))

Test the program

If you change the value for object 4/1/2 in Objects menu with Set Value, it will automatically
change the relay state in HDL network.

135

11. Internal IO control

 Binary/Analog input Digital output
Logic Machine 2 Control 4 4

Logic Machine 2 Interface 1 1

Read digital output 1 status

status=digital.read(1)

Turn output 1 on

digital.write(1, true)

Read from analog input channel 2

value=analog.read(2)

Read from analog input channel 2

value=analog.voltread(2)

Read from analog input channel 2, anything below 5V is false, otherwise true

value=analog.binread(2)

136

12. Communication with RS232/RS485 serial ports

The following are the naming of Serial ports for different versions of Logic Machine – Control
FT1.2, Interface FT1.2, Interface TP-UART.

Open RS232 connection

1. require('serial')

2. port =serial.open('/dev/ttyS2', {

3. baudrate=38400,

4. databits=8,

5. stopbits=1,

6. parity ='even',

7. duplex ='half'

8. })

Write to port

port:write('test data')

Blocking read (script will block until 10 characters are read)

data=port:read(10)

Timeout read (script will wait for 10 characters for 20 seconds)

data=port:read(10, 20)

Close serial port

port:close()

137

13. Object value export via XML

Make KNX objects XML readable

In the Objects tab click on the objects which you want to receive the current value by XML
request. Check the Export object

XML request from external PC

The XML request looks like this:

http://remote:remote@192.168.1.211/cgi-bin/scada-remote/request.cgi?m=xml&r=objects

Parameters:

• address – object address (e.g. “1/1/1″)

• name – object name (e.g. “My object”)

• data – decoded object value (e.g 42 or “01.01.2012″)

• datatype – object datatype (e.g. 1 or 5.001) – standard KNX data types

• time – object update time (UNIX timestamp)

• date – object update time (RFC date)

• comment – object comment (e.g. “Second floor entry lights”)

• tags – optional array of object tags (e.g. “Light”, “Second floor”)

Note! To get list of objects that have been updated after specific time you can pass an optional
“updatetime” parameter (UNIX timestamp format)

138

Login, Password for remote XML request

Login and password can be changed in Network Configuration � System � GUI Login �

Admin/Remote tab.

139

13.1. Alerts, Errors values

In similar way also Alerts and Errors can be read by XML requests.

Alerts XML request:
http://remote:remote@192.168.0.10/cgi-bin/scada-remote/request.cgi?m=xml&r=alerts

Errors XML request:
http://remote:remote@192.168.0.10/cgi-bin/scada-remote/request.cgi?m=xml&r=errors

140

14. Read Alerts RSS feeds from Logic Machine

It is possible to read Alerts and Errors messages by remote RSS readers.

Add new RSS feed in the RSS reader

• Use the following URL:

• http://remote:remote@192.168.1.211/cgi-bin/scada-remote/request.cgi?m=rss&r=alerts

• 50 latest alerts will be shown

• alert time will be shown in UNIX timestamp, alert date will be shown as RFC date

Error tab content by RSS

RSS can be used to read Error tab content as well. In this case the URL would look like:

http://remote:remote@192.168.1.211/cgi-bin/scada-remote/request.cgi?m=rss&r=errors

141

Login, Password for remote RSS requests

Login and password can be changed in Network Configuration � System � GUI Login �

Admin/Remote tab.

